YOLO V8训练自己的数据集并测试

news2024/11/17 1:33:18

目录

1 YOLOV8部署

2 标注软件labelme安装

3 将labelme转化为YOLOV8支持的数据格式

4 开始训练

5 利用训练结果进行测试


1 YOLOV8部署

        我的一篇博客已经提到,这里不再赘述:

YOLO V8语义分割模型部署-CSDN博客YOLO V8语义分割模型部署https://blog.csdn.net/qq_41694024/article/details/133983334

2 标注软件labelme安装

        我们采用一键安装的方式:

 pip install labelme

        这个对python版本有要求,python版本最好是3.8。如果不是那就再茶ungjiange虚拟环境吧。

        直接命令行输入labelme启动,可能会出现这个问题:

(yo) liuhongwei@liuhongwei-Legion-Y9000P-IRX8H:~/Desktop/ultralytics/examples/YOLOv8-CPP-Inference/build$ labelme
[INFO   ] __init__:get_config:70 - Loading config file from: /home/liuhongwei/.labelmerc
QObject::moveToThread: Current thread (0x564cffaed340) is not the object's thread (0x564d01248510).
Cannot move to target thread (0x564cffaed340)

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/home/liuhongwei/anaconda3/envs/yo/lib/python3.8/site-packages/cv2/qt/plugins" even though it was found.
This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

Available platform plugins are: xcb, eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl.

        这是QT版本太高了.....,降低QT版本:

pip install pyqt5==5.14.0

        再次启动labelme:

        可以用了。

        label使用就是打开一个含有图像的文件夹就可以,使用很简单,上过本科的一看界面就会,给大家展示一张标注结果:

3 将labelme转化为YOLOV8支持的数据格式

        先装依赖:

pip install pycocotools

        用我的脚本将labelme形式的标注文件转化为yolo格式的文件:

'''
Created on Oct 23, 2023
@author: Liuhongwei
'''
import os
import sys
import argparse
import shutil
import math
from collections import OrderedDict
 
import json
import cv2
import PIL.Image
  
from sklearn.model_selection import train_test_split
from labelme import utils
 
 
class Labelme2YOLO(object):
    
    def __init__(self, json_dir):
        self._json_dir = json_dir
        
        self._label_id_map = self._get_label_id_map(self._json_dir)
        
    def _make_train_val_dir(self):
        self._label_dir_path = os.path.join(self._json_dir, 
                                            'YOLODataset/labels/')
        self._image_dir_path = os.path.join(self._json_dir, 
                                            'YOLODataset/images/')
        
        for yolo_path in (os.path.join(self._label_dir_path + 'train/'), 
                          os.path.join(self._label_dir_path + 'val/'),
                          os.path.join(self._image_dir_path + 'train/'), 
                          os.path.join(self._image_dir_path + 'val/')):
            if os.path.exists(yolo_path):
                shutil.rmtree(yolo_path)
            
            os.makedirs(yolo_path)    
                
    def _get_label_id_map(self, json_dir):
        label_set = set()
    
        for file_name in os.listdir(json_dir):
            if file_name.endswith('json'):
                json_path = os.path.join(json_dir, file_name)
                data = json.load(open(json_path))
                for shape in data['shapes']:
                    label_set.add(shape['label'])
        
        return OrderedDict([(label, label_id) \
                            for label_id, label in enumerate(label_set)])
    
    def _train_test_split(self, folders, json_names, val_size):
        if len(folders) > 0 and 'train' in folders and 'val' in folders:
            train_folder = os.path.join(self._json_dir, 'train/')
            train_json_names = [train_sample_name + '.json' \
                                for train_sample_name in os.listdir(train_folder) \
                                if os.path.isdir(os.path.join(train_folder, train_sample_name))]
            
            val_folder = os.path.join(self._json_dir, 'val/')
            val_json_names = [val_sample_name + '.json' \
                              for val_sample_name in os.listdir(val_folder) \
                              if os.path.isdir(os.path.join(val_folder, val_sample_name))]
            
            return train_json_names, val_json_names
        
        train_idxs, val_idxs = train_test_split(range(len(json_names)), 
                                                test_size=val_size)
        train_json_names = [json_names[train_idx] for train_idx in train_idxs]
        val_json_names = [json_names[val_idx] for val_idx in val_idxs]
        
        return train_json_names, val_json_names
    
    def convert(self, val_size):
        json_names = [file_name for file_name in os.listdir(self._json_dir) \
                      if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
                      file_name.endswith('.json')]
        folders =  [file_name for file_name in os.listdir(self._json_dir) \
                    if os.path.isdir(os.path.join(self._json_dir, file_name))]
        train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)
        
        self._make_train_val_dir()
    
        # convert labelme object to yolo format object, and save them to files
        # also get image from labelme json file and save them under images folder
        for target_dir, json_names in zip(('train/', 'val/'), 
                                          (train_json_names, val_json_names)):
            for json_name in json_names:
                json_path = os.path.join(self._json_dir, json_name)
                json_data = json.load(open(json_path))
                
                print('Converting %s for %s ...' % (json_name, target_dir.replace('/', '')))
                
                img_path = self._save_yolo_image(json_data, 
                                                 json_name, 
                                                 self._image_dir_path, 
                                                 target_dir)
                    
                yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
                self._save_yolo_label(json_name, 
                                      self._label_dir_path, 
                                      target_dir, 
                                      yolo_obj_list)
        
        print('Generating dataset.yaml file ...')
        self._save_dataset_yaml()
                
    def convert_one(self, json_name):
        json_path = os.path.join(self._json_dir, json_name)
        json_data = json.load(open(json_path))
        
        print('Converting %s ...' % json_name)
        
        img_path = self._save_yolo_image(json_data, json_name, 
                                         self._json_dir, '')
        
        yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
        self._save_yolo_label(json_name, self._json_dir, 
                              '', yolo_obj_list)
    
    def _get_yolo_object_list(self, json_data, img_path):
        yolo_obj_list = []
        
        img_h, img_w, _ = cv2.imread(img_path).shape
        for shape in json_data['shapes']:
            # labelme circle shape is different from others
            # it only has 2 points, 1st is circle center, 2nd is drag end point
            if shape['shape_type'] == 'circle':
                yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
            else:
                yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)
            
            yolo_obj_list.append(yolo_obj)
            
        return yolo_obj_list
    
    def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
        obj_center_x, obj_center_y = shape['points'][0]
        
        radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 + 
                           (obj_center_y - shape['points'][1][1]) ** 2)
        obj_w = 2 * radius
        obj_h = 2 * radius
        
        yolo_center_x= round(float(obj_center_x / img_w), 6)
        yolo_center_y = round(float(obj_center_y / img_h), 6)
        yolo_w = round(float(obj_w / img_w), 6)
        yolo_h = round(float(obj_h / img_h), 6)
            
        label_id = self._label_id_map[shape['label']]
        
        return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
    
    def _get_other_shape_yolo_object(self, shape, img_h, img_w):
        def __get_object_desc(obj_port_list):
            __get_dist = lambda int_list: max(int_list) - min(int_list)
            
            x_lists = [port[0] for port in obj_port_list]        
            y_lists = [port[1] for port in obj_port_list]
            
            return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
        
        obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
                    
        yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
        yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
        yolo_w = round(float(obj_w / img_w), 6)
        yolo_h = round(float(obj_h / img_h), 6)
            
        label_id = self._label_id_map[shape['label']]
        
        return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
    
    def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list):
        txt_path = os.path.join(label_dir_path, 
                                target_dir, 
                                json_name.replace('.json', '.txt'))
 
        with open(txt_path, 'w+') as f:
            for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
                yolo_obj_line = '%s %s %s %s %s\n' % yolo_obj \
                    if yolo_obj_idx + 1 != len(yolo_obj_list) else \
                    '%s %s %s %s %s' % yolo_obj
                f.write(yolo_obj_line)
                
    def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir):
        img_name = json_name.replace('.json', '.png')
        img_path = os.path.join(image_dir_path, target_dir,img_name)
        
        if not os.path.exists(img_path):
            img = utils.img_b64_to_arr(json_data['imageData'])
            PIL.Image.fromarray(img).save(img_path)
        
        return img_path
    
    def _save_dataset_yaml(self):
        yaml_path = os.path.join(self._json_dir, 'YOLODataset/', 'dataset.yaml')
        
        with open(yaml_path, 'w+') as yaml_file:
            yaml_file.write('train: %s\n' % \
                            os.path.join(self._image_dir_path, 'train/'))
            yaml_file.write('val: %s\n\n' % \
                            os.path.join(self._image_dir_path, 'val/'))
            yaml_file.write('nc: %i\n\n' % len(self._label_id_map))
            
            names_str = ''
            for label, _ in self._label_id_map.items():
                names_str += "'%s', " % label
            names_str = names_str.rstrip(', ')
            yaml_file.write('names: [%s]' % names_str)
    
 
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--json_dir',type=str,
                        help='Please input the path of the labelme json files.')
    parser.add_argument('--val_size',type=float, nargs='?', default=None,
                        help='Please input the validation dataset size, for example 0.1 ')
    parser.add_argument('--json_name',type=str, nargs='?', default=None,
                        help='If you put json name, it would convert only one json file to YOLO.')
    args = parser.parse_args(sys.argv[1:])
         
    convertor = Labelme2YOLO(args.json_dir)
    if args.json_name is None:
        convertor.convert(val_size=args.val_size)
    else:
        convertor.convert_one(args.json_name)
    

        将标注文件全部放在labelmeannotation文件夹内:

        启动脚本,参数1为这个文件夹,参数2为val占数据集的比例,比如是0.1。命令如下:

 python 222.py --json_dir labelmeannotation/ --val_size 0.1

        开始转换ing:

        转化完毕:

        转化好的文件在labelmeannotation文件夹内。

        我们把这个文件拷贝到yolo的主目录下:

        新建一个文件default_copy.yaml,里面有几个部分注意修改。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training

task: detect  # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train  # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark

# Train settings -------------------------------------------------------------------------------------------------------
model:  # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: /home/liuhongwei/Desktop/ultralytics/YOLODataset/dataset.yaml # (str, optional) path to data file, i.e. coco128.yaml
epochs: 300  # (int) number of epochs to train for
patience: 50  # (int) epochs to wait for no observable improvement for early stopping of training
batch: -1  # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640  # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True  # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False  # (bool) True/ram, disk or False. Use cache for data loading
device: 0  # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 16  # (int) number of worker threads for data loading (per RANK if DDP)
project:  # (str, optional) project name
name: /home/liuhongwei/Desktop/ultralytics/666/ # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False  # (bool) whether to overwrite existing experiment
pretrained: True  # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto  # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True  # (bool) whether to print verbose output
seed: 0  # (int) random seed for reproducibility
deterministic: True  # (bool) whether to enable deterministic mode
single_cls: False  # (bool) train multi-class data as single-class
rect: False  # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False  # (bool) use cosine learning rate scheduler
close_mosaic: 10  # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False  # (bool) resume training from last checkpoint
amp: True  # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0  # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False  # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None  # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
# Segmentation
overlap_mask: True  # (bool) masks should overlap during training (segment train only)
mask_ratio: 4  # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0  # (float) use dropout regularization (classify train only)

# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True  # (bool) validate/test during training
split: val  # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False  # (bool) save results to JSON file
save_hybrid: False  # (bool) save hybrid version of labels (labels + additional predictions)
conf:  # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7  # (float) intersection over union (IoU) threshold for NMS
max_det: 300  # (int) maximum number of detections per image
half: False  # (bool) use half precision (FP16)
dnn: False  # (bool) use OpenCV DNN for ONNX inference
plots: True  # (bool) save plots during train/val

# Prediction settings --------------------------------------------------------------------------------------------------
source:  # (str, optional) source directory for images or videos
show: False  # (bool) show results if possible
save_txt: False  # (bool) save results as .txt file
save_conf: False  # (bool) save results with confidence scores
save_crop: False  # (bool) save cropped images with results
show_labels: True  # (bool) show object labels in plots
show_conf: True  # (bool) show object confidence scores in plots
vid_stride: 1  # (int) video frame-rate stride
stream_buffer: False  # (bool) buffer all streaming frames (True) or return the most recent frame (False)
line_width:   # (int, optional) line width of the bounding boxes, auto if missing
visualize: False  # (bool) visualize model features
augment: False  # (bool) apply image augmentation to prediction sources
agnostic_nms: False  # (bool) class-agnostic NMS
classes:  # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False  # (bool) use high-resolution segmentation masks
boxes: True  # (bool) Show boxes in segmentation predictions

# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript  # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False  # (bool) use Kera=s
optimize: False  # (bool) TorchScript: optimize for mobile
int8: False  # (bool) CoreML/TF INT8 quantization
dynamic: False  # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False  # (bool) ONNX: simplify model
opset:  # (int, optional) ONNX: opset version
workspace: 4  # (int) TensorRT: workspace size (GB)
nms: False  # (bool) CoreML: add NMS

# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01  # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01  # (float) final learning rate (lr0 * lrf)
momentum: 0.937  # (float) SGD momentum/Adam beta1
weight_decay: 0.0005  # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0  # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8  # (float) warmup initial momentum
warmup_bias_lr: 0.1  # (float) warmup initial bias lr
box: 7.5  # (float) box loss gain
cls: 0.5  # (float) cls loss gain (scale with pixels)
dfl: 1.5  # (float) dfl loss gain
pose: 12.0  # (float) pose loss gain
kobj: 1.0  # (float) keypoint obj loss gain
label_smoothing: 0.0  # (float) label smoothing (fraction)
nbs: 64  # (int) nominal batch size
hsv_h: 0.015  # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # (float) image HSV-Value augmentation (fraction)
degrees: 0.0  # (float) image rotation (+/- deg)
translate: 0.1  # (float) image translation (+/- fraction)
scale: 0.5  # (float) image scale (+/- gain)
shear: 0.0  # (float) image shear (+/- deg)
perspective: 0.0  # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # (float) image flip up-down (probability)
fliplr: 0.5  # (float) image flip left-right (probability)
mosaic: 1.0  # (float) image mosaic (probability)
mixup: 0.0  # (float) image mixup (probability)
copy_paste: 0.0  # (float) segment copy-paste (probability)

# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg:  # (str, optional) for overriding defaults.yaml

# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml  # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

        1.data:改成我们生成文件的dataset.yaml文件路径 其他就用我的就行了

4 开始训练

        将YOLODataset文件夹移动到ultralytics文件夹(YOLO主目录),修改/home/liuhongwei/Desktop/ultralytics/YOLODataset/datasetsyaml文件,改成绝对路径。

train: /home/liuhongwei/Desktop/ultralytics/YOLODataset/images/train/
val: /home/liuhongwei/Desktop/ultralytics/YOLODataset/images/val/

nc: 6

names: ['ZD', 'XALYS', 'ZZS', 'BH', 'SQL', 'HPYS']

       打开我们的yolo环境输入开始训练

yolo cfg=/home/liuhongwei/Desktop/ultralytics/default_copy.yaml

        开始训练!这里训练300个epoch!GPU一定显存一定要大!!!mAP一直提高,yolo内部损失函数计算做的很好。

        训练完毕!

        得到我们的训练结果:

5 利用训练结果进行测试

        YOLOV8为我们封装好了测试的功能包:

        直接调用我的代码即可:

from ultralytics import YOLO
 
 
 
# 预测
model = YOLO("/home/liuhongwei/Desktop/ultralytics/YOLODataset/runs/detect/train2/weights/best.pt")
source = "/home/liuhongwei/Desktop/ultralytics/test_images"
results = model.predict(source,save=True,show_conf=True)  # predict on an image
print('ok')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1125465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DC-6 靶机

DC_6 信息搜集 存活检测 详细扫描 需要添加 DNS 解析 vim /etc/hosts后台网页扫描 dirsearch -u http://10.4.7.150网页信息搜集 使用 wappalyzer 插件识别 cms 指纹&#xff0c;发现为熟悉的 WordPress 并且发现了网站的登陆页面 直接上 wpscan 扫描用户 wpscan --url…

【Web】| CSS Float (浮动)的使用方法

Float&#xff08;浮动&#xff09;概念 CSS的Float&#xff08;浮动&#xff09;&#xff0c;会使得元素向左或者向右移动&#xff0c;其它周围元素也会重新排列。 Float浮动&#xff0c;往往是用于图像&#xff0c;但它的布局一样非常有效。 元素如何浮动 元素的水平方向…

23年上半年上午题复习

敏捷方法 耦合 软件维护 消息 面向对象测试 面向对象设计原则 包图 原型模式 数据库三级模型 数据库函数依赖 哈夫曼树 左0右1 折半查找 画一个折半查找树&#xff0c;这个树只会往一个方向查找&#xff0c;一个节点不会同时出现左右子树&#xff0c;较小的作为左子树&#…

redis 宕机恢复

1.集群现在状态 6个进程 主从分配如下 2. 关闭其中一个主节点 可以看到从节点转换成了主节点&#xff0c;7002主节点处在失败状态&#xff1a; 3.重新启动失败节点 可以看到启动后成为从节点&#xff1a; 另外&#xff0c;如果主节点宕机&#xff0c;从节点转换为主节点…

使用VisualSVN在Windows系统上设置SVN服务器,并结合内网穿透实现公网访问

文章目录 前言1. VisualSVN安装与配置2. VisualSVN Server管理界面配置3. 安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4. 固定公网地址访问 前言 SVN 是 subversion 的缩写&#xff0c;是一个开放源代码的版本控制系统…

【数据结构与算法】二叉树的运用要点

目录 一&#xff0c;二叉树的结构深入认识 二&#xff0c;二叉树的遍历 三&#xff0c;二叉树的基本运算 3-1&#xff0c;计算二叉树的大小 3-2&#xff0c;统计二叉树叶子结点个数 3-3&#xff0c;计算第k层的节点个数 3-4&#xff0c;查找指定值的结点 一&#xff0c;二叉…

循环神经网络(Recurrent Neural Network)

1. 为什么需要循环神经网络 RNN 上图是一幅全连接神经网络图&#xff0c;我们可以看到输入层-隐藏层-输出层&#xff0c;他们每一层之间是相互独立地&#xff0c;(框框里面代表同一层)&#xff0c;每一次输入生成一个节点&#xff0c;同一层中每个节点之间又相互独立的话&#…

【jvm】虚拟机栈之操作数栈

目录 一、说明二、图解2.1 代码示例2.2 javap操作 三、图示3.1 bipush 153.2 istore_13.3 bipush 83.4 istore_23.5 iload_13.6 iload_23.7 iadd3.8 istore_33.9 return结束 四、附加 一、说明 1.Operand Stack 2.栈可以使用数组或链表来实现 3.每一个独立的栈帧包含一个后进先…

Mac 开机提示Google LLC 注册 无法登录进入系统

Google LLC 会在电脑启动时提示如下弹窗&#xff0c;并要求登录谷歌账户进行验证 此时很明显没有用来进行验证的账号&#xff0c;所以需要关掉这个验证程序 从日志里面可以看到LLC启动了一个Tiny.app的程序 只需要想办法把这个程序删掉即可 关机 按住 Command R 开机 进入R…

【MySQL架构篇】MySQL字符集、大小写规范及默认数据库

文章目录 1. 字符集与字符集比较规则2. 大小写规范3. 默认数据库4. 与文件系统相关 1. 字符集与字符集比较规则 MySQL有4个级别的字符集和比较规则&#xff0c;分别是 服务器级别数据库级别表级别列级别 当创建对应表或列未指定字符集时&#xff0c;默认会取其上一级别的字符…

JavaScript-1-菜鸟教程

将内容写到 HTML 文档中 - - - document.write() <script>// 括号里的内容要有引号document.write("<h1>这是一个标题</h1>");document.write(<div class"box">hello world</div>);</script><style>.box{width…

如何部署lvs负载均衡集群 DR模式

Lvs _DR 模式 也是最常见的lv负载方式 DR DIRECT ROUTING 直接路由模式 DR模式工作过程 1 .客户端请求vip 2、LVS的调度器接受请求之后&#xff0c;根据算法选择一台后端的真实服务器&#xff0c; 请求转发到后端RS,请求的报 文的目的MAC地址&#xff0c;修改成后端真实服务器的…

同为科技(TOWE)大功率带机械联锁工业插头插座箱

所谓工业机械联锁开关插座&#xff0c;是一种工业用途插座&#xff0c;带有一个旋钮开关&#xff0c;通过旋钮开关可以控制电源的通断。其特点是具有联动锁定机构&#xff0c;当旋钮开关断开操作后&#xff0c;联动锁定机构会自动撤销限位&#xff0c;使插头能够插入或拔出。当…

RabbitMQ基础篇 笔记

RabbitMQ 余额支付 同步调用 一步一步的来&#xff0c;支付业务写完后&#xff0c;如果之后加需求&#xff0c;还需要增加代码&#xff0c;不符合开闭原则。 性能上也有问题&#xff0c;openfeign是同步调用&#xff0c;性能太差。 同步调用耦合太多。 同步的优势是可以立…

Node编写用户登录接口

目录 前言 服务器 编写登录接口API 使用sql语句查询数据库中是否有该用户 判断密码是否正确 生成JWT的Token字符串 配置解析token的中间件 配置捕获错误中间件 完整的登录接口代码 前言 本文介绍如何使用node编写登录接口以及解密生成token&#xff0c;如何编写注册接…

侯捷C++面向对象程序设计笔记(上)-Object Based(基于对象)部分

基于对象就是对于单一class的设计。 对于有指针的&#xff1a;complex.h complex-test.cpp 对于没有指针的&#xff1a; string.h string-test.cpp https://blog.csdn.net/ncepu_Chen/article/details/113843775?spm1001.2014.3001.5501#commentBox 没有指针成员——以复数co…

【单片机学习笔记】Windows+Vscode+STM32F4+freeRTOS+FatFs gcc环境搭建

为摒弃在接受keil邮件&#xff0c;研究了下gun编译&#xff0c;以STM32F407为例&#xff0c;简单记录 1. 软件包准备 Git 选择对应版本直接安装即可https://git-scm.com/download/winmakegcc ​ 1&#xff09;将上述软件包放置于C盘根目录 2&#xff09;添加环境变量 3&am…

分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测&#xff08;SE注意力机制&#xff09; 目录 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测&#xff08;SE注意力机制&#xff09;分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.MAT…

Android View拖拽startDragAndDrop,Kotlin

Android View拖拽startDragAndDrop&#xff0c;Kotlin import android.os.Bundle import android.util.Log import android.view.DragEvent import android.view.View import android.view.View.OnDragListener import android.view.View.OnLongClickListener import android.w…

Spring中方法拦截器

一、MethodInterceptor 在动态代理中要想添加一个额外功能&#xff0c;只要去实现MethodBeforeAdvice这个接口就行了&#xff0c;但是实现了这个接口的额外功能只能运行在目标类执行之前&#xff0c;如果是想在目标类执行之后呢&#xff1f;那这个需求就完成不了&#xff0c;所…