STM32实现USB转TTL串口工具

news2024/11/25 16:52:53

STM32实现USB转TTL串口工具

具有USB接口和UART接口的STM32芯片,如STM32F1, STM32F4等等,都可以实现USB转TTL串口工具的制作。目前具有USB接口的最小资源的芯片是STM32F103C6T6。这里介绍USB转UART的代码设计。

STM32例化的USB VCOM,数据通讯到STM32内部设定的缓存空间,如果不向外部进行UART转发,则VCOM的波特率为名义上的波特率,实际上是按照USB接口自动协商的差分速率在进行数据传输。在向外部进行UART转发时,UART的波特率可以单独配置,并不需要和VCOM端配置的名义上的波特率相同。而在向外部进行UART转发,且UART的波特率与VCOM的波特率一致时,也就实现了USB转TTL串口工具,设计的要点一是将USB传递的VCOM波特率信息,用于配置转发的UART的波特率;二是通过终端,DMA和缓存方式的配合,实现有效的时序转发。

如下介绍基本的USB转TTL串口转发逻辑设计,一些高级串口控制功能可以根据需要增加调整。

STM32工程配置

首先建立基本工程并配置时钟:
在这里插入图片描述
配置USB VCOM:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
配置UART1作为转发串口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

首先在usbd_cdc_if.c修改代码获取VCOM配置信息(事件自动触发)并重新配置转发串口UART1的波特率:
在这里插入图片描述
在重新配置转发串口UART1的波特率后,修改识别标识,main.c主程序里识别后开启UART1的单字节中断接收,并采用缓存方式解决通过USB VCOM转发未完成而UART1继续接收到数据的情况。当主程序里识别到UART1缓存区域有数据,则转存后通过USB VCOM发送出去,并修改UART1接收缓存区接收索引位置。

USB VCOM收到的数据,通过UART1的发送DMA方式发送出去。并且通过UART1的发送完成中断进行标识设置,代码通过缓存方式解决USB VCOM收到新的数据而UART1的数据发送未完成的情况。

usbd_cdc_if.c修改后的完整实现代码:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : usbd_cdc_if.c
  * @version        : v2.0_Cube
  * @brief          : Usb device for Virtual Com Port.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "usbd_cdc_if.h"

/* USER CODE BEGIN INCLUDE */
#include "main.h"
/* USER CODE END INCLUDE */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
USBD_CDC_LineCodingTypeDef LineCoding =
{
    115200, /* Baud-rate:115200*/
    0x00,   /* Stop Bit:1*/
    0x00,   /* Verification: none*/
    0x08    /* Data bits: 8*/
};


void ComPort_Config(void)
{
  extern UART_HandleTypeDef huart1;
  extern uint8_t uart1_reconfig_flag;
  if(HAL_UART_DeInit(&huart1) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /* set the Stop bit */
  switch (LineCoding.format)
  {
  case 0:
    huart1.Init.StopBits = UART_STOPBITS_1;
    break;
  case 2:
    huart1.Init.StopBits = UART_STOPBITS_2;
    break;
  default :
    huart1.Init.StopBits = UART_STOPBITS_1;
    break;
  }

  /* set the parity bit*/
  switch (LineCoding.paritytype)
  {
  case 0:
    huart1.Init.Parity = UART_PARITY_NONE;
    break;
  case 1:
    huart1.Init.Parity = UART_PARITY_ODD;
    break;
  case 2:
    huart1.Init.Parity = UART_PARITY_EVEN;
    break;
  default :
    huart1.Init.Parity = UART_PARITY_NONE;
    break;
  }

  /*set the data type : only 8bits and 9bits is supported */
  switch (LineCoding.datatype)
  {
  case 0x07:
    /* With this configuration a parity (Even or Odd) must be set */
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    break;
  case 0x08:
    if(huart1.Init.Parity == UART_PARITY_NONE)
    {
      huart1.Init.WordLength = UART_WORDLENGTH_8B;
    }
    else
    {
      huart1.Init.WordLength = UART_WORDLENGTH_9B;
    }

    break;
  default :
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    break;
  }

  huart1.Init.BaudRate     = LineCoding.bitrate;
  huart1.Init.HwFlowCtl    = UART_HWCONTROL_NONE;
  huart1.Init.Mode         = UART_MODE_TX_RX;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;

  if(HAL_UART_Init(&huart1) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  uart1_reconfig_flag = 1;
}

/* USER CODE END PV */

/** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY
  * @brief Usb device library.
  * @{
  */

/** @addtogroup USBD_CDC_IF
  * @{
  */

/** @defgroup USBD_CDC_IF_Private_TypesDefinitions USBD_CDC_IF_Private_TypesDefinitions
  * @brief Private types.
  * @{
  */

/* USER CODE BEGIN PRIVATE_TYPES */

/* USER CODE END PRIVATE_TYPES */

/**
  * @}
  */

/** @defgroup USBD_CDC_IF_Private_Defines USBD_CDC_IF_Private_Defines
  * @brief Private defines.
  * @{
  */

/* USER CODE BEGIN PRIVATE_DEFINES */
/* USER CODE END PRIVATE_DEFINES */

/**
  * @}
  */

/** @defgroup USBD_CDC_IF_Private_Macros USBD_CDC_IF_Private_Macros
  * @brief Private macros.
  * @{
  */

/* USER CODE BEGIN PRIVATE_MACRO */

/* USER CODE END PRIVATE_MACRO */

/**
  * @}
  */

/** @defgroup USBD_CDC_IF_Private_Variables USBD_CDC_IF_Private_Variables
  * @brief Private variables.
  * @{
  */
/* Create buffer for reception and transmission           */
/* It's up to user to redefine and/or remove those define */
/** Received data over USB are stored in this buffer      */
uint8_t UserRxBufferFS[APP_RX_DATA_SIZE];

/** Data to send over USB CDC are stored in this buffer   */
uint8_t UserTxBufferFS[APP_TX_DATA_SIZE];

/* USER CODE BEGIN PRIVATE_VARIABLES */

/* USER CODE END PRIVATE_VARIABLES */

/**
  * @}
  */

/** @defgroup USBD_CDC_IF_Exported_Variables USBD_CDC_IF_Exported_Variables
  * @brief Public variables.
  * @{
  */

extern USBD_HandleTypeDef hUsbDeviceFS;

/* USER CODE BEGIN EXPORTED_VARIABLES */

/* USER CODE END EXPORTED_VARIABLES */

/**
  * @}
  */

/** @defgroup USBD_CDC_IF_Private_FunctionPrototypes USBD_CDC_IF_Private_FunctionPrototypes
  * @brief Private functions declaration.
  * @{
  */

static int8_t CDC_Init_FS(void);
static int8_t CDC_DeInit_FS(void);
static int8_t CDC_Control_FS(uint8_t cmd, uint8_t* pbuf, uint16_t length);
static int8_t CDC_Receive_FS(uint8_t* pbuf, uint32_t *Len);

/* USER CODE BEGIN PRIVATE_FUNCTIONS_DECLARATION */

/* USER CODE END PRIVATE_FUNCTIONS_DECLARATION */

/**
  * @}
  */

USBD_CDC_ItfTypeDef USBD_Interface_fops_FS =
{
  CDC_Init_FS,
  CDC_DeInit_FS,
  CDC_Control_FS,
  CDC_Receive_FS
};

/* Private functions ---------------------------------------------------------*/
/**
  * @brief  Initializes the CDC media low layer over the FS USB IP
  * @retval USBD_OK if all operations are OK else USBD_FAIL
  */
static int8_t CDC_Init_FS(void)
{
  /* USER CODE BEGIN 3 */
  /* Set Application Buffers */
  USBD_CDC_SetTxBuffer(&hUsbDeviceFS, UserTxBufferFS, 0);
  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, UserRxBufferFS);
  return (USBD_OK);
  /* USER CODE END 3 */
}

/**
  * @brief  DeInitializes the CDC media low layer
  * @retval USBD_OK if all operations are OK else USBD_FAIL
  */
static int8_t CDC_DeInit_FS(void)
{
  /* USER CODE BEGIN 4 */
  return (USBD_OK);
  /* USER CODE END 4 */
}

/**
  * @brief  Manage the CDC class requests
  * @param  cmd: Command code
  * @param  pbuf: Buffer containing command data (request parameters)
  * @param  length: Number of data to be sent (in bytes)
  * @retval Result of the operation: USBD_OK if all operations are OK else USBD_FAIL
  */
static int8_t CDC_Control_FS(uint8_t cmd, uint8_t* pbuf, uint16_t length)
{
  /* USER CODE BEGIN 5 */
  switch(cmd)
  {
    case CDC_SEND_ENCAPSULATED_COMMAND:

    break;

    case CDC_GET_ENCAPSULATED_RESPONSE:

    break;

    case CDC_SET_COMM_FEATURE:

    break;

    case CDC_GET_COMM_FEATURE:

    break;

    case CDC_CLEAR_COMM_FEATURE:

    break;

  /*******************************************************************************/
  /* Line Coding Structure                                                       */
  /*-----------------------------------------------------------------------------*/
  /* Offset | Field       | Size | Value  | Description                          */
  /* 0      | dwDTERate   |   4  | Number |Data terminal rate, in bits per second*/
  /* 4      | bCharFormat |   1  | Number | Stop bits                            */
  /*                                        0 - 1 Stop bit                       */
  /*                                        1 - 1.5 Stop bits                    */
  /*                                        2 - 2 Stop bits                      */
  /* 5      | bParityType |  1   | Number | Parity                               */
  /*                                        0 - None                             */
  /*                                        1 - Odd                              */
  /*                                        2 - Even                             */
  /*                                        3 - Mark                             */
  /*                                        4 - Space                            */
  /* 6      | bDataBits  |   1   | Number Data bits (5, 6, 7, 8 or 16).          */
  /*******************************************************************************/
    case CDC_SET_LINE_CODING: //Get info from PC
		LineCoding.bitrate    = (uint32_t)(pbuf[0] | (pbuf[1] << 8) |\
                        (pbuf[2] << 16) | (pbuf[3] << 24));
		LineCoding.format     = pbuf[4];
		LineCoding.paritytype = pbuf[5];
		LineCoding.datatype   = pbuf[6];
		ComPort_Config();//re-config serial port
    break;

    case CDC_GET_LINE_CODING: //For PC to get info
		pbuf[0] = (uint8_t)(LineCoding.bitrate);
		pbuf[1] = (uint8_t)(LineCoding.bitrate >> 8);
		pbuf[2] = (uint8_t)(LineCoding.bitrate >> 16);
		pbuf[3] = (uint8_t)(LineCoding.bitrate >> 24);
		pbuf[4] = LineCoding.format;
		pbuf[5] = LineCoding.paritytype;
		pbuf[6] = LineCoding.datatype;
    break;

    case CDC_SET_CONTROL_LINE_STATE:

    break;

    case CDC_SEND_BREAK:

    break;

  default:
    break;
  }

  return (USBD_OK);
  /* USER CODE END 5 */
}

/**
  * @brief  Data received over USB OUT endpoint are sent over CDC interface
  *         through this function.
  *
  *         @note
  *         This function will issue a NAK packet on any OUT packet received on
  *         USB endpoint until exiting this function. If you exit this function
  *         before transfer is complete on CDC interface (ie. using DMA controller)
  *         it will result in receiving more data while previous ones are still
  *         not sent.
  *
  * @param  Buf: Buffer of data to be received
  * @param  Len: Number of data received (in bytes)
  * @retval Result of the operation: USBD_OK if all operations are OK else USBD_FAIL
  */
static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	  static uint8_t Buff[1024];
	  static uint32_t Buff_index = 0;
	  extern UART_HandleTypeDef huart1;
	  extern uint8_t uart1_txdone_flag;

	  if(uart1_txdone_flag==1)
	  {
		  uart1_txdone_flag = 0;

		  memcpy(Buff+Buff_index, Buf, *Len);  //Single frame data receiving
		  Buff_index += *Len;
		  uint8_t Buff_t[1024];
		  memcpy(Buff_t, Buff, Buff_index);   //Whole data shift for buffer protection
		  HAL_UART_Transmit_DMA(&huart1, Buff_t, Buff_index);
		  Buff_index = 0;
	  }
	  else
	  {
		  memcpy(Buff+Buff_index, Buf, *Len);  //Single frame data receiving
		  Buff_index += *Len;
	  }

	  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
	  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
	  return (USBD_OK);
  /* USER CODE END 6 */
}

/**
  * @brief  CDC_Transmit_FS
  *         Data to send over USB IN endpoint are sent over CDC interface
  *         through this function.
  *         @note
  *
  *
  * @param  Buf: Buffer of data to be sent
  * @param  Len: Number of data to be sent (in bytes)
  * @retval USBD_OK if all operations are OK else USBD_FAIL or USBD_BUSY
  */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{
  uint8_t result = USBD_OK;
  /* USER CODE BEGIN 7 */
  USBD_CDC_HandleTypeDef *hcdc = (USBD_CDC_HandleTypeDef*)hUsbDeviceFS.pClassData;
  if (hcdc->TxState != 0){
    return USBD_BUSY;
  }
  USBD_CDC_SetTxBuffer(&hUsbDeviceFS, Buf, Len);
  result = USBD_CDC_TransmitPacket(&hUsbDeviceFS);
  /* USER CODE END 7 */
  return result;
}

/* USER CODE BEGIN PRIVATE_FUNCTIONS_IMPLEMENTATION */

/* USER CODE END PRIVATE_FUNCTIONS_IMPLEMENTATION */

/**
  * @}
  */

/**
  * @}
  */

main.c的完整实现代码:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
uint8_t uart1_rxbyte;
uint8_t uart1_rxd[1024];
uint8_t uart1_txd[1024];
uint32_t uart1_rx_index = 0;
uint32_t uart1_rx_index_t = 0;

uint8_t uart1_reconfig_flag = 0;
uint8_t uart1_txdone_flag = 1; //0: TX ongoing; 1: TX idle;
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_tx;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USB_DEVICE_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, &uart1_rxbyte, 1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		if(uart1_reconfig_flag==1)
		{
			uart1_reconfig_flag = 0;

			HAL_UART_Receive_IT(&huart1, &uart1_rxbyte, 1); //Start receiving after port re-config
		}


		if(uart1_rx_index!=0)
		{
			memcpy(uart1_txd, uart1_rxd, uart1_rx_index); //Copy data
			uart1_rx_index_t = uart1_rx_index; //Copy length
			uart1_rx_index = 0; //Receiving index adjustment for new coming data
			while (CDC_Transmit_FS(uart1_txd, uart1_rx_index_t)==USBD_BUSY) PY_Delay_us_t(1); //Send data to USB

		}
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel4_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    if(huart==&huart1)
    {
    	 uart1_rxd[uart1_rx_index++]=uart1_rxbyte;

    	 HAL_UART_Receive_IT(&huart1, &uart1_rxbyte, 1);

    }
}

void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
	uart1_txdone_flag = 1;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

编译下载后即实现了USB转TTL串口工具。

STM32代码测试

将UART1的收发管脚短接,实现环回场景并行发收测试,连接STM32的USB到PC,打开串口工具进行发收测试,效果如下:
在这里插入图片描述

STM32例程下载

STM32F103C6T6 USB转TTL串口例程
STM32F401CCU6 USB转TTL串口例程

扩展模式

增加UART转RS232芯片(MAX3232)电路后,也就成为了USB转RS232串口工具
也可以修改逻辑实现USB转RS422, RS485, CAN等工具

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1123010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(1)(1.1) Bluetooth

文章目录 前言 1 连接到自动驾驶仪 2 连接Mission Planner快速入门 3 与Mission Planner的详细连接 4 从安卓地面站连接 5 如何更改波特率、设备名称和设备密码 6 故障排除 7 产品规格 前言 蓝牙数据链路&#xff08;如 HC-06 模块&#xff09;(HC-06 module)可用于将…

Node.JS---npm相关

文章目录 前言一、package.json配置项version&#xff1a;1.0.0devDependenciesdependenciespeerDependenciesoptionalDependencies 二、npm命令1、npm config listxmzs使用2、npm installpackage-lock.json作用 3、npm run4、 查看全局安装的可执行文件 npm生命周期npxnpx简介…

对象属性的读写两种方法

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 对象属性的读写 两种方法 选择题 下列代码执行输出的结果是? class C(object): name hello c1 C() print("【执行】c1C()") print("【显示】print(c1.name)") print(c…

伽马函数:将阶乘函数扩展到正整数之外

一、说明 &#xff0c;是对阶乘这种运算的实数域拓展。属于高级的数学模型&#xff0c;在高级概率模型用于定义分布函数。本文将介绍这个函数的基础概念和属性。 二、gamma函数定义 众所周知&#xff0c;阶乘这个运算本来是用于简化形如 n(n−1)(n−2)…321 的乘积的&#xff0…

OCR文字识别软件对于硬件的哪方面需求较高?

这个还得看OCR软件是远程识别还是本地识别&#xff0c;前者对电脑配置要求相对较低&#xff0c;因为OCR识别是在远程服务器上进行的&#xff0c;本地只是负责优化图片和保存识别结果&#xff0c;如金鸣表格文字识别和眼精星表格文字识别这类的软件就是基于远程的OCR识别方案&am…

MySQL性能优化指南:深入分析重做日志刷新到磁盘的机制

文章目录 &#x1f31f; MySQL重做日志性能优化指南&#x1f34a; 重做日志对数据库性能的影响&#x1f34a; 重做日志刷入磁盘的机制&#x1f34a; 实战使用&#x1f389; 1. 确认MySQL的redo log配置&#x1f389; 2. 强制刷新重做日志&#x1f389; 3. 检查重做日志是否已经…

【GIS前言技术】到底什么是实景三维?

文章目录 什么是实景三维&#xff1f;实景三维是怎么制作的&#xff1f;实景三维有哪些应用&#xff1f; 什么是实景三维&#xff1f; 实景三维是客观真实反映现实世界的三维模型&#xff0c;具有单体化、实体化、结构化、语义化的特点&#xff0c;通过融合模型三维、倾斜三维…

中文编程工具构件的应用:会员管理系统软件登录界面所用的构件编程实例

中文编程工具构件的应用&#xff1a;会员管理系统软件登录界面所用的构件编程实例 该实际应用的软件登录界面中的 用户名使用了 组合框构件&#xff0c;其内容可以读取动态赋值&#xff0c;密码框使用了 行编辑 构件&#xff0c;该构件可以预先设置密码字符。 该中文编程工具免…

【汇编】寄存器(学习笔记)

一、CPU工作原理 1、CPU概述 CPU由运算器、控制器、寄存器等器件组成&#xff0c;这些器件靠内部总线相连。 内部总线&#xff1a;CPU内部 <–> 各个器件 外部总线&#xff1a;CPU <–> 主板上其它器件 2、通用寄存器 8086CPU所有的寄存器都是16位的&#xff0c…

老胡的周刊(第112期)

老胡的信息周刊[1]&#xff0c;记录这周我看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;内容主题极大程度被我个人喜好主导。这个项目核心目的在于记录让自己有印象的信息做一个留存以及共享。 &#x1f3af; 项目 LocalAI[2] &#x1f916; 免费、开源的 Ope…

iOS自动化测试方案(三):WDA+iOS自动化测试解决方案

文章目录 一、背景二、环境准备三、总结四、扩展4.1、WDA Client4.2、先使用WDA实现自动化4.3、代码示例&#xff1a;4.4、脱离macOS测试iOS App自动化&#xff0c;两个解决方案&#xff1a;4.5、第二种解决办法&#xff1a;pip install -U weditor4.6、下载安装Appium-Inspect…

2023 年 42 周 - 学习 倦怠期回顾

2023 年 42 周 - 学习 & 倦怠期回顾 本周属于反思怪的时间&#xff0c;1/4 的内容涉及到反思自己&#xff0c;剩下超过 2/3 的内容是对于学习方法加强的笔记 顺便重新复习了一下上周的笔记&#xff0c;然后发现&#xff0c;其实周算错了……截图的日历直接用周日算成一周…

【tg】 7 GroupInstanceCustomImpl

group GroupInstanceCustomImpl 核心GroupInstanceCustomInternal G:\CDN\P2P-DEV\tdesktop-offical\Telegram\ThirdParty\tgcalls\tgcalls\group\GroupInstanceCustomImpl.h 最核心是是GroupInstanceCustomInternal: private:std::shared_ptr<Threads> _threads;std::u…

python学习笔记:引用、浅拷贝和深拷贝(底层原理)

前言 在python中“一切皆对象”&#xff0c;包括整数&#xff08;int&#xff09;&#xff0c;小数&#xff08;float&#xff09;等 引用 Python解释器维护了一个内部的数据结构&#xff0c;称为命名空间或符号表&#xff0c;它将变量名与对象的内存地址关联起来。当您创建一…

【ArcGIS模型构建器】02:shp批量转kml/kmz

文章目录 一、加载实验数据二、设计模型构建器三、保存模型构建器 一、加载实验数据 打开ArcMap&#xff0c;加载专栏配套实验数据data02.rar中的&#xff0c;位于乡镇根目录文件夹内的15个乡镇矢量数据。 接下来跟我一步步实现用模型构建器批量转为kml。 二、设计模型构建器…

如何创建前端绘图和图表?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

外贸找客户软件:BotMaster 2023 Crack

具有多设备支持的全新 WhatsApp™ Business 批量发送器 最新9.0.2.1 稳定且工作。 测试日期&#xff1a;2023 年 10 月 9 日 所有功能工作正常。 图像发送问题固定 数字过滤器和组抓取器已修复。 目前稳定 现在使用 BotMaster 9.0.2.1 从 WhatsApp™ 发送交互式按钮 您现在可以…

设置host

macOS sudo nano /etc/hosts sudo nano /etc/hosts127.0.0.1 yourdomain.com 127.0.0.1 subdomain.yourdomain.com 将 yourdomain.com 替换为您要配置的域名&#xff0c;将 subdomain.yourdomain.com 替换为您要配置的子域名。确保 IP 地址为 127.0.0.1&#xff0c;这将指向…

C++对象模型(19)-- 函数语义学:成员函数

1、普通成员函数的调用 1.1 调用方式的转换 为了提高普通成员函数的调用效率&#xff0c;在C中&#xff0c;对普通成员函数的调用&#xff0c;会转换成对全局函数的调用。 假如有下面所示的成员函数&#xff1a; class Test { public:int m_i;int func(int a) {m_i a;retu…

划片机:半导体芯片是如何封装的?

半导体芯片的封装是指将芯片内部的电路通过引脚、导线、焊盘等连接起来&#xff0c;并保护芯片免受外部环境的影响&#xff0c;同时满足外部电路的连接需求。以下是半导体芯片封装的常见步骤&#xff1a; 1. 减薄&#xff1a;将晶圆研磨减薄&#xff0c;以便于后续的划片操作。…