【TensorFlow1.X】系列学习笔记【入门二】

news2024/10/7 6:27:54

【TensorFlow1.X】系列学习笔记【入门二】

大量经典论文的算法均采用 TF 1.x 实现, 为了阅读方便, 同时加深对实现细节的理解, 需要 TF 1.x 的知识


文章目录

  • 【TensorFlow1.X】系列学习笔记【入门二】
  • 前言
  • 神经网络的参数
  • 神经网络的搭建
    • 前向传播
    • 反向传播
  • 总结


前言

学习了张量、计算图、会话等基础知识,下一步就是实现神经网络的搭建了,本篇博文将讲解搭建神经网络的过程,并简练总结搭建八股。【参考】


神经网络的参数

神经网络的参数是指在神经网络模型中需要学习的可调整值。这些参数用于调整模型的行为,定了神经网络的行为和性能,使其能够更好地拟合训练数据和进行预测。
在典型的神经网络中,参数主要存在于两个部分,用变量表示:

  1. 权重(Weights):
    权重是连接神经网络中不同层的神经元之间的参数。每个连接都有一个关联的权重,用于调整信息在网络中的传递。权重决定了每个输入对于特定神经元的重要性。在训练过程中,神经网络通过优化算法来调整权重,以最小化预测输出与实际输出之间的差距。
  2. 偏置(Biases):
    偏置是神经元的可调整参数,用于调整神经元的激活阈值。每个神经元都有一个关联的偏置值,它在计算神经元的输出时被加到加权输入上。偏置允许神经元对不同的输入模式做出不同的响应。

这些权重和偏置参数是在训练过程中学习的,通过反向传播算法和优化方法(如梯度下降)来更新,训练过程旨在最小化损失函数,以使神经网络能够更准确地进行预测。

在 TensorFlow 1.x 中,可以使用以下方法来初始化神经网络的参数:

方法功能
tf.random_normal()生成正态分布随机数
tf.truncated_normal()生成去掉过大偏离点的正态分布随机数
tf.random_uniform()生成均匀分布随机数
tf.random_uniform()生成均匀分布随机数
tf.zeros表示生成全 0 数组
tf.ones表示生成全 1 数组
tf.fill表示生成全定值数组
tf.constant表示生成直接给定值的数组
import tensorflow as tf
w = tf.Variable(tf.random_normal([2,3], stddev=2, mean=0, seed=1))
# => <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32_ref>
w = tf.Variable(tf.truncated_normal([2,3], stddev=2, mean=0, seed=1))
# => <tf.Variable 'Variable_1:0' shape=(2, 3) dtype=float32_ref>
w = tf.random_uniform([2,3], minval=0, maxval=1, dtype=tf.int32, seed=1)
# => Tensor("random_uniform:0", shape=(2, 3), dtype=int32)
w = tf.zeros([3,2], tf.int32)
# => Tensor("zeros:0", shape=(3, 2), dtype=int32)
w = tf.ones([3,2], tf.int32)
# => Tensor("ones:0", shape=(3, 2), dtype=int32)
w = tf.fill([3,2], 6)
# => Tensor("Fill:0", shape=(3, 2), dtype=int32)
w = tf.constant([3,2])
# => Tensor("Const:0", shape=(2,), dtype=int32)

注意:①随机种子如果去掉每次生成的随机数将不一致,②如果没有特殊要求标准差、均值、随机种子是可以不写的。


神经网络的搭建

神经网络模型的实现过程:

  1. 准备数据集:作为神经网络模型的训练\测试数据
  2. 前向传播:搭建模型结构,先搭建计算图,再用会话执行,计算输出
  3. 反向传播:模型学习到大量特征数据,迭代优化模型参数
  4. 完成训练,验证模型精度

由此可见,基于深度学主要分为两个过程,即训练过程和使用过程。 训练过程是第一步、第二步、第三步的循环迭代,使用过程是第四步,一旦参数优化完成就可以固定这些参数,实现特定应用了。当前很多实际应用中,会优先使用现有的成熟可靠的模型结构,用个人的数据集训练模型,判断是否能对个人数据集作出正确响应,再适当更改网络结构,反复迭代,让机器自动训练参数找出最优结构和参数,以固定专用模型。

前向传播

前向传播就是搭建模型的计算过程,让模型具有推理能力,可以针对一组输入给出相应的输出。
举个案例,假如快递运输费用,体积为 x1,重量为 x2,体积和重量就是我们选择的特征,把它们输入到神经网络,当体积和重量这组数据走过神经网络后会得到一个输出,即费用。
假如输入的特征值是:体积 0.7 重量 0.5:

由图可知,隐藏层节点 a11=x1w11+x2w21=0.14+0.15=0.29,同理算得节点 a12=0.32,a13=0.38,最终计算得到输出层 Y=-0.015,这便实现了前向传播过程。

前向传播过程的 tensorflow 描述:

  1. 输入层: X X X n × 2 {\rm{n}} \times 2 n×2的矩阵,表示一次输入 n n n组特征,这组特征包含了体积和重量两个元素。
    x = tf.placeholder(tf.float32, shape=(None, 2))
    
  2. 隐藏层: W ( F r o n t N o d e N u m b e r , R e a r N o d e N u m b e r ) ( l a y e r s ) W_{(F{\rm{rontNodeNumber}},R{\rm{earNodeNumber)}}}^{({\rm{layers}})} W(FrontNodeNumber,RearNodeNumber)(layers)是待优化的参数,对于第一计算层的 w ( 1 ) {w^{({\rm{1}})}} w(1)前面有两个节点,后面有三个节点, w ( 1 ) {w^{({\rm{1}})}} w(1)是个两行三列矩阵:
    W ( 1 ) = [ w ( 1 , 1 ) ( 1 ) w ( 1 , 2 ) ( 1 ) w ( 1 , 3 ) ( 1 ) w ( 2 , 1 ) ( 1 ) w ( 2 , 2 ) ( 1 ) w ( 2 , 3 ) ( 1 ) ] {W^{(1)}} = \left[ {\begin{array}{cc} {w_{(1,1{\rm{)}}}^{(1)}}&{w_{(1,2{\rm{)}}}^{(1)}}&{w_{(1,3{\rm{)}}}^{(1)}}\\ {w_{(2,1{\rm{)}}}^{(1)}}&{w_{(2,2{\rm{)}}}^{(1)}}&{w_{(2,3{\rm{)}}}^{(1)}} \end{array}} \right] W(1)=[w(1,1)(1)w(2,1)(1)w(1,2)(1)w(2,2)(1)w(1,3)(1)w(2,3)(1)],即 a ( 1 ) = [ a 11 , a 12 , a 13 ] = X W ( 1 ) {a^{\left( 1 \right)}} = \left[ {{a_{11}},{\rm{ }}{a_{12}},{\rm{ }}{a_{13}}} \right] = X{W^{(1)}} a(1)=[a11,a12,a13]=XW(1)
    对于第二计算层的 w ( 2 ) {w^{({\rm{2}})}} w(2)前面有三个节点,后面有1个节点, w ( 2 ) {w^{({\rm{2}})}} w(2)是个三行一列矩阵:
    W ( 2 ) = [ w ( 1 , 1 ) ( 2 ) w ( 2 , 1 ) ( 2 ) w ( 3 , 1 ) ( 2 ) ] {W^{(2)}} = \left[ {\begin{array}{cc} {w_{(1,1{\rm{)}}}^{(2)}}\\ {w_{(2,1{\rm{)}}}^{(2)}}\\ {w_{(3,1{\rm{)}}}^{(2)}} \end{array}} \right] W(2)= w(1,1)(2)w(2,1)(2)w(3,1)(2) ,即 y = a ( 1 ) W ( 1 ) {y} = {a^{\left( 1 \right)}}{W^{(1)}} y=a(1)W(1)
    a = tf.matmul(x, w1)
    y = tf.matmul(a, w2)
    

神经网络共有几层(或当前是第几层网络)都是指的计算层,所有的计算层统称为隐藏层,而隐藏层的计算层计算出结果通常称做中间特征,不要错把这些当作隐藏层。

完整的前向传播代码。

import tensorflow as tf

# 定义输入和参数
# 用tf.placeholder定义输入,在sess.run函数中要用feed_dict指定输入
x = tf.placeholder(tf.float32, shape=(None, 2))
w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

# 定义前向传播过程
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

# 汇总所有待优化变量
init_op = tf.global_variables_initializer()

# 调用会话计算结果
# 变量初始化、计算图节点运算都要用会话(with结构)实现
with tf.Session() as sess:
    # 在sess.run函数中变量初始化
    sess.run(init_op)
    # 在sess.run函数中计算图节点运算
    print("the result of tf3_5.py is:\n",sess.run(y, feed_dict={x: [[0.7,0.5],[0.2,0.3],[0.3,0.4],[0.4,0.5]]}))
    print("w1:\n", sess.run(w1))
    print("w2:\n", sess.run(w2))

反向传播

反向传播:训练模型参数,在所有参数上用梯度下降,使 NN 模型在训练数据上的损失函数最小。
反向传播过程的 tensorflow 描述:

  1. 损失函数(loss):计算得到的预测值 y 与已知真实值 y_的误差。均方误差 MSE
    是比较常用的方法之一,它计算前向传播求出的预测值与已知真实值之差的平方再求平均: M S E ( y _ , y ) = ∑ i = 1 n ( y − y _ ) 2 n MSE(y\_,y) = \frac{{\sum\nolimits_{i = 1}^n {{{(y - y\_)}^2}} }}{n} MSE(y_,y)=ni=1n(yy_)2
    loss_mse = tf.reduce_mean(tf.square(y-y_)) 
    
  2. 反向传播优化方法:以减小 loss 值为优化目标,常见的三种有随机梯度下降、momentum 优化器、adam优化器等优化方法。
    # 学习率(learning_rate):决定每次参数更新的幅度。
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) 
    train_step = tf.train.MomentumOptimizer(learning_rate, momentum).minimize(loss) 
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    
    方法功能
    tf.train.GradientDescentOptimizer()梯度下降用于最小化损失函数。它通过计算损失函数关于每个可训练参数的梯度,并将参数沿着梯度的反方向进行更新,以减少损失函数的值。
    tf.train.MomentumOptimizer()动量优化器在梯度下降的基础上引入了动量的概念,以加速训练过程,它通过累积之前梯度的方向来更新参数,以减少损失函数的值。
    tf.train.AdamOptimizer()结合了动量优化器和自适应学习率的思想。它根据梯度的平均值和方差来自适应地调整学习率,以在训练过程中更好地适应不同参数的变化,以减少损失函数的值。

完整的反向传播代码。

# coding:utf-8
# 0导入模块,生成模拟数据集。
import tensorflow as tf
import numpy as np

# 每次训练的数量
BATCH_SIZE = 8
SEED = 23455

# 基于seed产生随机数
rdm = np.random.RandomState(SEED)
# 随机数返回32行2列的矩阵 表示32组 体积和重量 作为输入数据集
X = rdm.rand(32, 2)
# 从X这个32行2列的矩阵中 取出一行 判断如果和小于1 给Y赋值1 如果和不小于1 给Y赋值0
# 作为输入数据集的标签(正确答案)
Y_ = [[int(x0*0.5+x1*0.8)] for (x0, x1) in X]

# 定义神经网络的输入、参数和输出,定义前向传播过程。
x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))

w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

# 定义损失函数及反向传播方法。
loss_mse = tf.reduce_mean(tf.square(y - y_))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss_mse)
# train_step = tf.train.AdamOptimizer(0.001).minimize(loss_mse)

# 生成会话,训练STEPS轮
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    # 输出目前(未经训练)的参数取值。
    print("w1:\n", sess.run(w1))
    print("w2:\n", sess.run(w2))

    # 训练模型
    # 悬链次数
    STEPS = 3000
    for i in range(STEPS):
    	# 随机选取一组batchsize为8的数据段
        start = (i * BATCH_SIZE) % 32
        end = start + BATCH_SIZE
        sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
        if i % 500 == 0:
            total_loss = sess.run(loss_mse, feed_dict={x: X, y_: Y_})
            print("After %d training step(s), loss_mse on all data is %g" % (i, total_loss))

    # 输出训练后的参数取值。
    print("w1:\n", sess.run(w1))
    print("w2:\n", sess.run(w2))

总结

梳理出神经网络搭建的八股,搭建过程分四步完成:准备工作、前向传播、反向传播和循环迭代:

  1. 导入模块,生成模拟数据集;
  2. 前向传播:定义输入、参数和输出;
  3. 反向传播:定义损失函数、反向传播方法;
  4. 生成会话,训练n轮。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1118117.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

react dispatch不生效的坑

一、前言 最近写react antd项目&#xff0c;在A页面中使用了dispatch方法&#xff0c;然后B页面中嵌套A页面&#xff0c;没有问题&#xff1b; 但是在C页面中嵌套A页面的时候&#xff0c;就发现dispatch方法没有执行&#xff0c;也不报错&#xff0c;就很奇怪&#xff1b; 还…

论坛介绍|COSCon'23 开源硬件(H)

众多开源爱好者翘首期盼的开源盛会&#xff1a;第八届中国开源年会&#xff08;COSCon23&#xff09;将于 10月28-29日在四川成都市高新区菁蓉汇举办。本次大会的主题是&#xff1a;“开源&#xff1a;川流不息、山海相映”&#xff01;各位新老朋友们&#xff0c;欢迎到成都&a…

navicate16在M1芯片运行问题

问题描述&#xff1a;本人M1芯片的mac&#xff0c;最近升级macOS14系统后&#xff0c;navicate15就总是闪退&#xff0c;如图 于是就安装了16的版本&#xff0c;但是16的版本不支持m1芯片电脑&#xff0c;如下图所示 于是就有了下面的操作&#xff0c;虽然能够使用了&#xff0…

【论文解读】The Power of Scale for Parameter-Efficient Prompt Tuning

一.介绍 1.1 promote tuning 和 prefix tuning 的关系 “前缀调优”的简化版 1.2 大致实现 冻结了整个预训练模型&#xff0c;并且只允许每个下游任务附加k个可调令牌到输入文本。这种“软提示”是端到端训练的&#xff0c;可以压缩来自完整标记数据集的信号&#xff0c;使…

数据图册页面(左边一列图片缩略图,右边展示图片大图)

最近要写这么一个页面&#xff0c;左侧一列图片缩略图&#xff0c;点击左侧缩略图后有选中效果&#xff0c;然后右侧展示图片原图&#xff0c;还能够左右翻页查看。 最后写了一个demo出来&#xff0c;demo还不是很完善&#xff0c;需要自己修改&#xff0c;后面我也给出了修改建…

发挥服务器的无限潜能:创意项目、在线社区和更多

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 ✨特色专栏&#xff1a…

ICMPv6与NDP

1. ICMPv6简介 ICMP概述 Internet控制消息协议ICMP (Internet Control Message Protocol)是IP协议的辅助协议。 ICMP协议用来在网络设备间传递各种差错和控制信息&#xff0c;对于收集各种网络信息、诊断和排除各种网络故障等方面起着至关重要的作用。 ICMP差错检查 ICMP …

Mingw快捷安装教程 并完美解决出现的下载错误:The file has been downloaded incorrectly

安装c语言编译器的时候&#xff0c;老是出现The file has been downloaded incorrectly&#xff0c;真的让人 直接去官网拿压缩包&#xff1a;https://sourceforge.net/projects/mingw-w64/files/ &#xff08;往下拉找到那个x86_64-win32-seh的链接&#xff0c;点击后会自动…

【算法|动态规划No.27】leetcode516. 最长回文子序列

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

项目知识点总结-过滤器-MD5注册-邮箱登录

&#xff08;1&#xff09;过滤器 使用过滤器验证用户是否登录 /** * Title: NoLoginFilter.java * Package com.qfedu.web.filter * Description: TODO(用一句话描述该文件做什么) * author Feri * date 2018年5月28日 * version V1.0 */ package com.gdsdx…

12 Masked Self-Attention(掩码自注意力机制)

博客配套视频链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看 配套 github 链接:https://github.com/nickchen121/Pre-training-language-model 配套博客链接:https://www.cnblogs.com/nickchen121/p/15105048.html 上节课回顾 《Attenti…

Pandas数据处理分析系列2-数据如何导入

Pandas Excel 数据导入 Pandas库提供了一组强大的输入/输出(I/O)函数(简称为:I/O API),用于读取和写入各种数据格式,目前已支持常见的多种外数据格式。 Pandas 常见读取方法如下表: 可以看出,在使用Pandas 读取数据格式文件时,只需一个方法则可,不同的方法参数, 可…

P3 查询

文章目录 Task1 访问方法执行程序seq_scan_executorinsert_executorupdate_executordelete_executorindex_scan_executor Task2 聚合和连接执行器AggregationNestedLoopJoinHashJoin优化NestedLoopJoin到HashJoin Task3 排序限制执行器和Top-N优化SortLimitTop-N优化规则 BusTu…

反射、注解、元注解、动态代理

反射 反射就是&#xff1a;加载类&#xff0c;并允许以编程的方式解剖类中的各种成分&#xff08;成员变量、方法、构造器等 学习反射就是学习如何获取类的信息并操作它们 加载类&#xff0c;获取类的字节码&#xff1a;Class对象获取类的构造器&#xff1a;Constructor对象获…

滚珠螺杆应如何存放避免受损

滚珠螺杆是一种高精度的机械零件&#xff0c;保存或使用不当&#xff0c;会直接损坏&#xff0c;影响生产效率&#xff0c;因此我们在使用时需要注意以下事项&#xff1a; 1、避免垂直放置&#xff1a;没有施加预压的螺杆垂直放置时&#xff0c;螺母会因自重而从螺杆轴上脱荐下…

【斗破年番】谣言不攻自破,萧潇造型曝光,制作进度已达中州,风尊者帅翻

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析重要国漫资讯。 斗破苍穹动画中&#xff0c;萧炎与小医仙重聚&#xff0c;也即将与美杜莎女王回蛇人族见家长&#xff0c;剧情一度变得愈加的炸裂&#xff0c;颇有逐鹿鹅厂国漫第一把交椅的架势。正因此&#xff0c;斗破动…

强化学习 | Python强化学习

强化学习在近年来取得了巨大的突破,使机器能够在不断的试错中自动学习并做出决策。 本文将介绍强化学习的基本概念、原理和应用,同时提供详细的公式解释和Python代码示例。 强化学习是什么? 强化学习是一种机器学习方法,用于让智能体(例如机器人、自动驾驶汽车或游戏玩家…

Keil 5 安装教程(最新最全最详细)附网盘资源

一.简介 文章转自其他平台 链接: keil5下载连接. 官方下载地址&#xff1a;https://www.keil.com/download/product/ Keil5&#xff08;32/64&#xff09;位下载地址&#xff1a; 链接&#xff1a; https://pan.baidu.com/s/1Jn15jeb0Aa1cSietvXfcwg 密码&#xff1a;8ji…

基于springboot实现财务管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现财务管理系统演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#x…

记录阿里云服务器(Centos7.9)部署Thingsboard(3.4.2)遇到的一些问题

记录编译Thingsboard遇到的一些问题 部署了一个thingsboard项目到阿里云服务器上&#xff0c;历时十一天&#xff0c;遇到了很多困难&#xff0c;国内关于Thingsboard的资料确实很少&#xff0c;所以想着写一篇博客记录一下&#xff0c;或许能够给以后编译遇到类似问题的人一些…