单reactor实战

news2025/4/18 3:56:25

前言:reactor作为一种高性能的范式,值得我们学习
本次目标 实现一个基于的reactor 具备echo功能的服务器


核心组件

Reactor本身是靠一个事件驱动的框架,无疑引出一个类似于moduo的"EventLoop "以及boost.asio中的context而言,不断获取就绪事件,其本质无疑是io多用复路实现的。

下面就是核心功能:

void EventLoop::loop(){
    while(!quit){
    std::vector<Channel*> chs;
        chs = ep->poll();
        for(auto it = chs.begin(); it != chs.end(); ++it){
            (*it)->handleEvent();
        }
    }
}

当事件检测到了,无疑我们要进行分发,这个所以我们也可以借助一个核心组件
Channel来分发

class Channel
{
private:
    EventLoop *loop;
    int fd;
    uint32_t events;
    uint32_t revents;
    bool inEpoll;
    std::function<void()> callback;
public:
    Channel(EventLoop *_loop, int _fd);
    ~Channel();

    void enableReading();//设置检测什么事件

    int getFd();
    uint32_t getEvents();
    uint32_t getRevents();
    bool getInEpoll();
    void setInEpoll();

    // void setEvents(uint32_t);
    void setRevents(uint32_t);
    void setCallback(std::function<void()>);
};

不难发现,其实这个核心函数为std::function<void()> callback和void setCallback(std::function<void()>);,设置不同事件的回调函数

void Channel::setCallback(std::function<void()> _cb){
    callback = _cb;
}

有过reactor的基础的人,一般都知道我们将业务分成连接和业务处理
没基础也没关系可以阅读这个Reactor解析 你也可以直接看图
在这里插入图片描述
这就引出了Acceptor类 专门处理连接的

  • Acceptor类存在于事件驱动EventLoop类中,也就是Reactor模式的main-Reactor
  • 类中的socket fd就是服务器监听的socket fd,每一个Acceptor对应一个socket fd
  • 这个类也通过一个独有的Channel负责分发到epoll,该Channel的事件处理函数handleEvent()会调用Acceptor中的接受连接函数来新建一个TCP连接
class Acceptor
{
private:
    EventLoop *loop;
    Socket *sock;//每一个Acceptor对应一个socket fd
    Channel *acceptChannel;//这个类也通过一个独有的Channel负责分发到epoll
public:
    Acceptor(EventLoop *_loop);
    ~Acceptor();
    void acceptConnection();
    std::function<void(Socket*)> newConnectionCallback;
    void setNewConnectionCallback(std::function<void(Socket*)>);
};

这就引出为什么 的核心组件其连接组件Acceptor(EventLoop *_loop);和 void acceptConnection();

Acceptor::Acceptor(EventLoop *_loop) :loop(_loop){

    sock=new Socket();
    InetAddress* addr=new InetAddress("127.0.0.1",8080);
    sock->bind(addr);
    sock->listen();
    sock->setnonblocking();

    acceptChannel=new Channel(_loop,sock->getFd());
    std::function<void()> cb = std::bind(&Acceptor::acceptConnection, this);//注册回调函数 进行连接
    acceptChannel->setCallback(cb);
    acceptChannel->enableReading();//注册事件
    delete addr;

}

void Acceptor::acceptConnection(){
    InetAddress*clnt_addr=new InetAddress();
    Socket* clnt_sock=new Socket(sock->accept(clnt_addr));
    printf("new client fd %d! IP: %s Port: %d\n", clnt_sock->getFd(), inet_ntoa(clnt_addr->getAddr().sin_addr), ntohs(clnt_addr->getAddr().sin_port));
    clnt_sock->setnonblocking();
    newConnectionCallback(sock);
    delete clnt_addr;
}

讲一下这个 newConnectionCallback(sock); 这个就是业务逻辑处理。这份代码的不完整之处就在于 他的目的核心是实现一个功能 echo回响 所以直接连接之后给了一个echo的业务逻辑。引出一个connect 即每一个连接都有一个业务处理方法

Connection类,这个类也有以下几个特点:

  • 类存在于事件驱动EventLoop类中,也就是Reactor模式的main-Reactor
  • 类中的socket fd就是客户端的socket fd,每一个Connection对应一个socket fd
  • 每一个类的实例通过一个独有的Channel负责分发到epoll,该Channel的事件处理函数handleEvent()会调用Connection中的事件处理函数来响应客户端请求
class Connection {
private:
    EventLoop *loop;
    Socket *sock;
    Channel *channel;
    std::function<void(Socket*)> deleteConnectionCallback;//
public:
    Connection(EventLoop *_loop, Socket *_sock);
    ~Connection();

    void echo(int sockfd);
    void setDeleteConnectionCallback(std::function<void(Socket*)>);

};

通过这个函数也可以看出一个echo就是一个connection的回调函数。然后我们再来看一下另一个重要的资源释放.设置一个主动释放的connection的回调函数。

void Connection::setDeleteConnectionCallback(std::function<void(Socket*)> _cb){
    deleteConnectionCallback = _cb;
} 

也是注册函数

Reactor-server

class Server
{
private:
    EventLoop *loop;
    //ADD 连接逻辑
    Acceptor *acceptor;
    std::map<int, Connection*> connections;//一一对应

public:
    Server(EventLoop*);
    ~Server();

    void handleReadEvent(int);
    void newConnection(Socket *serv_sock);
    void deleteConnection(Socket *sock);
};

这个reactor无疑包含了三个组件 事件驱动,连接逻辑和业务逻辑

Server::Server(EventLoop *_loop) : loop(_loop){
    acceptor = new Acceptor(loop);//完成所有的连接步骤 就没设置回调函数
    std::function<void(Socket*)> cb = std::bind(&Server::newConnection, this, std::placeholders::_1);//这个是每次动态
    acceptor->setNewConnectionCallback(cb);//

}
void Server::newConnection(Socket *sock){
    Connection *conn = new Connection(loop, sock);
    std::function<void(Socket*)> cb = std::bind(&Server::deleteConnection, this, std::placeholders::_1);
    conn->setDeleteConnectionCallback(cb);
    connections[sock->getFd()] = conn;

}
void Server::deleteConnection(Socket * sock){
    Connection *conn = connections[sock->getFd()];
    connections.erase(sock->getFd());
    delete conn;
}
  • 解析
    这个reactor-main是不是有三个疑问
  • 为什么连接步骤完成了
  • 他的业务函数也就是echo在哪
  • 为什么用map来装饰Connection

首先我们来回顾一下整体流程,我们要明确一个点 一个socket的绑定IP和端口,不算连接逻辑,也就是说当你初始化的时候就应该弄好了。
真正的连接逻辑应该是设置连接回调函数的时候,例如

Acceptor::Acceptor(EventLoop *_loop) :loop(_loop){

    sock=new Socket();
    InetAddress* addr=new InetAddress("127.0.0.1",8080);
    sock->bind(addr);
    sock->listen();
    sock->setnonblocking();

    acceptChannel=new Channel(_loop,sock->getFd());
    std::function<void()> cb = std::bind(&Acceptor::acceptConnection, this);//注册回调函数 
    acceptChannel->setCallback(cb);/
    acceptChannel->enableReading();//注册事件
    delete addr;

}

acceptChannel->setCallback(cb)这个就连接逻辑,当有客户端来的时候 他就是执行这个逻辑。第一个疑问解决
然后 acceptor->setNewConnectionCallback(cb);这个是不是设置了业务逻辑,因为前面讲过 这个没有线程池而且业务逻辑单一,所有将echo默认每一个连接的业务逻辑 所有直接再连接回调的时候设置了一个业务逻辑(你去看connect的构造函数 就会发现他直接绑定了echo做业务逻辑)第二疑问解决

Connection::Connection(EventLoop *_loop, Socket *_sock):loop(_loop),sock(_sock),channel(nullptr){
    //属性
    channel=new Channel(loop,sock->getFd());//
    std::function<void()>cb=std::bind(&Connection::echo,this,sock->getFd());//业务处理函数;
    channel->setCallback(cb);
    channel->enableReading();
}
Connection::~Connection(){
    delete channel;
    delete sock;
}

也就是说 你可以从这下手 换一个业务逻辑 实现其他的业务
第三个疑问:

对于断开TCP连接操作,也就是销毁一个Connection类的实例。由于Connection的生命周期由Server进行管理,所以也应该由Server来删除连接。如果在Connection业务中需要断开连接操作,也应该和之前一样使用回调函数来实现.使用map就是好删除管理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2331245.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

初阶C++笔记第一篇:C++基础语法

虽然以下大多数知识点都在C语言中学过&#xff0c;但还是有一些知识点和C语言不同&#xff0c;比如&#xff1a;代码格式、头文件、关键字、输入输出、字符串类型等... 1. 初识C 1.1 第一个C程序 编写C分为4个步骤&#xff1a; 创建项目创建文件编写代码运行程序 C的第一条…

无需libpacp库,BPF指令高效捕获指定数据包

【环境】无libpacp库的Linux服务器 【要求】高效率读取数据包&#xff0c;并过滤指定端口和ip 目前遇到两个问题 一是手写BPF&#xff0c;难以兼容&#xff0c;有些无法正常过滤二是性能消耗问题&#xff0c;尽可能控制到1% 大方向&#xff1a;过滤数据包要在内核层处理&…

react实现上传图片到阿里云OSS以及问题解决(保姆级)

一、优势 提高上传速度&#xff1a;前端直传利用了浏览器与 OSS 之间的直接连接&#xff0c;能够充分利用用户的网络带宽。相比之下&#xff0c;后端传递文件时&#xff0c;文件需要经过后端服务器的中转&#xff0c;可能会受到后端服务器网络环境和处理能力的限制&#xff0c;…

Python 字典和集合(常见的映射方法)

本章内容的大纲如下&#xff1a; 常见的字典方法 如何处理查找不到的键 标准库中 dict 类型的变种set 和 frozenset 类型 散列表的工作原理 散列表带来的潜在影响&#xff08;什么样的数据类型可作为键、不可预知的 顺序&#xff0c;等等&#xff09; 常见的映射方法 映射类型…

Matlab轴承故障信号仿真与故障分析

1.摘要 本文介绍了一个基于Matlab的轴承故障信号仿真与分析程序&#xff0c;旨在模拟和分析轴承内圈故障信号的特征。程序首先通过生成故障信号、共振信号和调制信号&#xff0c;添加噪声和离散化处理&#xff0c;构建模拟的振动信号&#xff0c;并保存相关数据。通过快速傅里…

Linux 进程 | 概念 / 特征 / 状态 / 优先级 / 空间

注&#xff1a; 本文为 “Linux 进程” 相关文章合辑。 未整理去重。 Linux 进程概念&#xff08;精讲&#xff09; A little strawberry 于 2021-10-15 10:23:55 发布 基本概念 课本概念&#xff1a;程序的一个执行实例&#xff0c;正在执行的程序等。 内核观点&#xff…

重回全面发展亲自操刀

项目场景&#xff1a; 今年工作变动&#xff0c;优化后在一家做国有项目的私人公司安顿下来了。公司环境不如以前&#xff0c;但是好在瑞欣依然可以每天方便的买到。人文氛围挺好&#xff0c;就是工时感觉有点紧&#xff0c;可能长期从事产品迭代开发&#xff0c;一下子转变做项…

3D珠宝渲染用什么软件比较好?渲染100邀请码1a12

印度珠宝商 Mohar Fine Jewels 和英国宝石商 Gemfields 在今年推出了合作珠宝系列——「Emeralds in Full Bloom」&#xff0c;它的灵感源自花草绽放的春季田野&#xff0c;共有 39 件作品&#xff0c;下面这个以植物为主题的开口手镯就是其中一件。 在数字时代&#xff0c;像这…

【数据结构】邻接矩阵完全指南:原理、实现与稠密图优化技巧​

邻接矩阵 导读一、图的存储结构1.1 分类 二、邻接矩阵法2.1 邻接矩阵2.2 邻接矩阵存储网 三、邻接矩阵的存储结构四、算法评价4.1 时间复杂度4.2 空间复杂度 五、邻接矩阵的特点5.1 特点1解析5.2 特点2解析5.3 特点3解析5.4 特点4解析5.5 特点5解析5.6 特点6解析 结语 导读 大…

【嵌入式-stm32电位器控制以及旋转编码器控制LED亮暗】

嵌入式-stm32电位器控制LED亮暗 任务1代码1Key.cKey.hTimer.cTimer.hPWM.cPWM.hmain.c 实验现象1任务2代码2Key.cKey.hmain.c 实验现象2问题与解决总结 源码框架取自江协科技&#xff0c;在此基础上做扩展开发。 任务1 本文主要介绍利用stm32f103C8T6实现电位器控制PWM的占空比…

Uniapp 集成极光推送(JPush)完整指南

文章目录 前言一、准备工作1. 注册极光开发者账号2. 创建应用3. Uniapp项目准备 二、集成极光推送插件方法一&#xff1a;使用UniPush&#xff08;推荐&#xff09;方法二&#xff1a;手动集成极光推送SDK 三、配置原生平台参数四、核心功能实现1. 获取RegistrationID2. 设置别…

2025年常见渗透测试面试题-sql(题目+回答)

网络安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 SQLi 一、发现test.jsp?cid150 注入点的5种WebShell获取思路 1. 文件写入攻击 2. 日志文件劫持 3.…

【RabbitMQ】队列模型

1.概述 RabbitMQ作为消息队列&#xff0c;有6种队列模型&#xff0c;分别在不同的场景进行使用&#xff0c;分别是Hello World&#xff0c;Work queues&#xff0c;Publish/Subscribe&#xff0c;Routing&#xff0c;Topics&#xff0c;RPC。 下面就分别对几个模型进行讲述。…

StarRocks 助力首汽约车精细化运营

作者&#xff1a;任智红&#xff0c;首汽约车大数据负责人 更多交流&#xff0c;联系我们&#xff1a;https://wx.focussend.com/weComLink/mobileQrCodeLink/334%201%202/ffbe5 导读&#xff1a; 本文整理自首汽约车大数据负责人任智红在 StarRocks 年度峰会上的演讲&#xf…

痉挛性斜颈康复助力:饮食调养指南

痉挛性斜颈患者除了积极治疗&#xff0c;合理饮食也能辅助缓解症状&#xff0c;提升生活质量。其健康饮食可从以下方面着手&#xff1a; 高蛋白质食物助力肌肉修复 痉挛性斜颈会导致颈部肌肉异常收缩&#xff0c;消耗较多能量&#xff0c;蛋白质有助于肌肉的修复与维持。日常可…

mysql镜像创建docker容器,及其可能遇到的问题

前提&#xff0c;已经弄好基本的docker服务了。 一、基本流程 1、目录准备 我自己的资料喜欢放在 /data 目录下&#xff0c;所以老规矩&#xff1a; 先进入 /data 目录&#xff1a; cd /data 创建 mysql 目录并进入&#xff1a; mkdir mysql cd mysql 2、镜像查找 docke…

JavaEE——线程的状态

目录 前言1. NEW2. TERMINATED3. RUNNABLE4. 三种阻塞状态总结 前言 本篇文章来讲解线程的几种状态。在Java中&#xff0c;线程的状态是一个枚举类型&#xff0c;Thread.State。其中一共分为了六个状态。分别为&#xff1a;NEW,RUNNABLE,BLOCKED,WAITING,TIMED_WAITING, TERMI…

RuntimeError: Error(s) in loading state_dict for ChartParser

一 bug错误 最近使用千问大模型有一个bug&#xff0c;报错信息如下 raise RuntimeError(Error(s) in loading state_dict for {}:\n\t{}.format( RuntimeError: Error(s) in loading state_dict for ChartParser:Unexpected key(s) in state_dict: "pretrained_model.em…

2025 年安徽交安安全员考试:利用记忆宫殿强化记忆​

安徽考生在面对交安安全员考试繁杂的知识点时&#xff0c;记忆宫殿是强大的记忆工具。选择一个熟悉且空间结构清晰的场所作为记忆宫殿&#xff0c;如自己居住的房屋。将房屋的不同区域&#xff0c;如客厅、卧室、厨房等&#xff0c;分别对应不同知识板块&#xff0c;像客厅对应…

安全编码课程 实验6 整数安全

实验项目 实现安全计数器&#xff1a;实现 Counter 结构&#xff0c;确保计数范围为 0~100。 实验要求&#xff1a; 1、使用 struct 封装计数值value&#xff1b; 2、计数器初值为 0&#xff1b; 3、increment() 方法增加计数&#xff0c;但不能超过 100&#xff1b; 4、decrem…