🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
🚀 算法题 🚀 |
🍔 目录
- 🚩 题目链接
- ⛲ 题目描述
- 🌟 求解思路&实现代码&运行结果
- ⚡ 堆
- 🥦 求解思路
- 🥦 实现代码
- 🥦 运行结果
- 💬 共勉
🚩 题目链接
- 2530. 执行 K 次操作后的最大分数
⛲ 题目描述
给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你的 起始分数 为 0 。
在一步 操作 中:
选出一个满足 0 <= i < nums.length 的下标 i ,
将你的 分数 增加 nums[i] ,并且
将 nums[i] 替换为 ceil(nums[i] / 3) 。
返回在 恰好 执行 k 次操作后,你可能获得的最大分数。
向上取整函数 ceil(val) 的结果是大于或等于 val 的最小整数。
示例 1:
输入:nums = [10,10,10,10,10], k = 5
输出:50
解释:对数组中每个元素执行一次操作。最后分数是 10 + 10 + 10 + 10 + 10 = 50 。
示例 2:
输入:nums = [1,10,3,3,3], k = 3
输出:17
解释:可以执行下述操作:
第 1 步操作:选中 i = 1 ,nums 变为 [1,4,3,3,3] 。分数增加 10 。
第 2 步操作:选中 i = 1 ,nums 变为 [1,2,3,3,3] 。分数增加 4 。
第 3 步操作:选中 i = 2 ,nums 变为 [1,1,1,3,3] 。分数增加 3 。
最后分数是 10 + 4 + 3 = 17 。
提示:
1 <= nums.length, k <= 105
1 <= nums[i] <= 109
🌟 求解思路&实现代码&运行结果
⚡ 堆
🥦 求解思路
- 这道题目我们直接模拟就可以,但是,需要我们使用到一个额外的数据结构,最大堆,每次取出最大的值,记录结果,修改当前位置的数值,最后将当前位置的值直接添加到堆中。
- 具体求解的过程步骤请看下面代码。
🥦 实现代码
class Solution {
public long maxKelements(int[] nums, int k) {
PriorityQueue<Integer> queue=new PriorityQueue<>((a,b)->(b-a));
for(int v:nums) queue.add(v);
long ans=0;
while(!queue.isEmpty()&&k-->0){
int temp=queue.poll();
ans+=temp;
temp=(temp+2)/3;
queue.add(temp);
}
return ans;
}
}
🥦 运行结果
💬 共勉
最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |