16 - 多线程调优(下):如何优化多线程上下文切换?

news2025/1/11 11:41:45

通过上一讲的讲解,相信你对上下文切换已经有了一定的了解了。如果是单个线程,在 CPU 调用之后,那么它基本上是不会被调度出去的。如果可运行的线程数远大于 CPU 数量,那么操作系统最终会将某个正在运行的线程调度出来,从而使其它线程能够使用 CPU ,这就会导致上下文切换。

还有,在多线程中如果使用了竞争锁,当线程由于等待竞争锁而被阻塞时,JVM 通常会将这个锁挂起,并允许它被交换出去。如果频繁地发生阻塞,CPU 密集型的程序就会发生更多的上下文切换。

那么问题来了,我们知道在某些场景下使用多线程是非常必要的,但多线程编程给系统带来了上下文切换,从而增加的性能开销也是实打实存在的。那么我们该如何优化多线程上下文切换呢?这就是我今天要和你分享的话题,我将重点介绍几种常见的优化方法。

1、竞争锁优化

大多数人在多线程编程中碰到性能问题,第一反应多是想到了锁。

多线程对锁资源的竞争会引起上下文切换,还有锁竞争导致的线程阻塞越多,上下文切换就越频繁,系统的性能开销也就越大。由此可见,在多线程编程中,锁其实不是性能开销的根源,竞争锁才是。

锁的优化归根结底就是减少竞争。

1.1、减少锁的持有时间

我们知道,锁的持有时间越长,就意味着有越多的线程在等待该竞争资源释放。如果是 Synchronized 同步锁资源,就不仅是带来线程间的上下文切换,还有可能会增加进程间的上下文切换。

例如,可以将一些与锁无关的代码移出同步代码块,尤其是那些开销较大的操作以及可能被阻塞的操作。

  • 优化前
    public synchronized void mySyncMethod(){
        businesscode1();
        mutextMethod();
        businesscode2();
    }
  • 优化后
    public void mySyncMethod(){
        businesscode1();
        synchronized(this)
        {
            mutextMethod();
        }
        businesscode2();
    }

1.2、降低锁的粒度

同步锁可以保证对象的原子性,我们可以考虑将锁粒度拆分得更小一些,以此避免所有线程对一个锁资源的竞争过于激烈。具体方式有以下两种:

  • 锁分离

与传统锁不同的是,读写锁实现了锁分离,也就是说读写锁是由“读锁”和“写锁”两个锁实现的,其规则是可以共享读,但只有一个写。

这样做的好处是,在多线程读的时候,读读是不互斥的,读写是互斥的,写写是互斥的。而传统的独占锁在没有区分读写锁的时候,读写操作一般是:读读互斥、读写互斥、写写互斥。所以在读远大于写的多线程场景中,锁分离避免了在高并发读情况下的资源竞争,从而避免了上下文切换。

  • 锁分段

我们在使用锁来保证集合或者大对象原子性时,可以考虑将锁对象进一步分解。例如,我之前讲过的 Java1.8 之前版本的 ConcurrentHashMap 就使用了锁分段。

1.3、非阻塞乐观锁替代竞争锁

volatile 关键字的作用是保障可见性及有序性,volatile 的读写操作不会导致上下文切换,因此开销比较小。 但是,volatile 不能保证操作变量的原子性,因为没有锁的排他性。

而 CAS 是一个原子的 if-then-act 操作,CAS 是一个无锁算法实现,保障了对一个共享变量读写操作的一致性。CAS 操作中有 3 个操作数,内存值 V、旧的预期值 A 和要修改的新值 B,当且仅当 A 和 V 相同时,将 V 修改为 B,否则什么都不做,CAS 算法将不会导致上下文切换。Java 的 Atomic 包就使用了 CAS 算法来更新数据,就不需要额外加锁。

上面我们了解了如何从编码层面去优化竞争锁,那么除此之外,JVM 内部其实也对 Synchronized 同步锁做了优化,我在 12 讲中有详细地讲解过,这里简单回顾一下。

在 JDK1.6 中,JVM 将 Synchronized 同步锁分为了偏向锁、轻量级锁、偏向锁以及重量级锁,优化路径也是按照以上顺序进行。JIT 编译器在动态编译同步块的时候,也会通过锁消除、锁粗化的方式来优化该同步锁。

2、wait/notify 优化

在 Java 中,我们可以通过配合调用 Object 对象的 wait() 方法和 notify() 方法或 notifyAll() 方法来实现线程间的通信。

在线程中调用 wait() 方法,将阻塞等待其它线程的通知(其它线程调用 notify() 方法或 notifyAll() 方法),在线程中调用 notify() 方法或 notifyAll() 方法,将通知其它线程从 wait() 方法处返回。

下面我们通过 wait() / notify() 来实现一个简单的生产者和消费者的案例,代码如下:

public class WaitNotifyTest {
    public static void main(String[] args) {
        Vector<Integer> pool=new Vector<Integer>();
        Producer producer=new Producer(pool, 10);
        Consumer consumer=new Consumer(pool);
        new Thread(producer).start();
        new Thread(consumer).start();
    }
}
	/**
	 * 生产者
	 * @author admin
	 *
	 */
	class Producer implements Runnable{
	    private Vector<Integer> pool;
	    private Integer size;
	    
	    public Producer(Vector<Integer>  pool, Integer size) {
	        this.pool = pool;
	        this.size = size;
	    }
	    
	    public void run() {
	        for(;;){
	            try {
	                System.out.println(" 生产一个商品 ");
	                produce(1);
	            } catch (InterruptedException e) {
	                // TODO Auto-generated catch block
	                e.printStackTrace();
	            }
	        }
	    }
	    private void produce(int i) throws InterruptedException{
	        while(pool.size()==size){
	            synchronized (pool) {
	                System.out.println(" 生产者等待消费者消费商品, 当前商品数量为 "+pool.size());
	                pool.wait();// 等待消费者消费
	            }
	        }
	        synchronized (pool) {
	            pool.add(i);
	            pool.notifyAll();// 生产成功,通知消费者消费
	        }
	    }
	}
 
 
	/**
	 * 消费者
	 * @author admin
	 *
	 */
	class Consumer implements Runnable{
	    private Vector<Integer>  pool;
	    public Consumer(Vector<Integer>  pool) {
	        this.pool = pool;
	    }
	    
	    public void run() {
	        for(;;){
	            try {
	                System.out.println(" 消费一个商品 ");
	                consume();
	            } catch (InterruptedException e) {
	                // TODO Auto-generated catch block
	                e.printStackTrace();
	            }
	        }
	    }
	    
	    private void consume() throws InterruptedException{
	        while(pool.isEmpty()){
	            synchronized (pool) {
	                System.out.println(" 消费者等待生产者生产商品, 当前商品数量为 "+pool.size());
	                pool.wait();// 等待生产者生产商品
	            }
	        }
	        synchronized (pool) {
	            pool.remove(0);
	            pool.notifyAll();// 通知生产者生产商品
	            
	        }
	    }
 
}

2.1、wait/notify 的使用导致了较多的上下文切换

结合以下图片,我们可以看到,在消费者第一次申请到锁之前,发现没有商品消费,此时会执行 Object.wait() 方法,这里会导致线程挂起,进入阻塞状态,这里为一次上下文切换。

当生产者获取到锁并执行 notifyAll() 之后,会唤醒处于阻塞状态的消费者线程,此时这里又发生了一次上下文切换。

被唤醒的等待线程在继续运行时,需要再次申请相应对象的内部锁,此时等待线程可能需要和其它新来的活跃线程争用内部锁,这也可能会导致上下文切换。

如果有多个消费者线程同时被阻塞,用 notifyAll() 方法,将会唤醒所有阻塞的线程。而某些商品依然没有库存,过早地唤醒这些没有库存的商品的消费线程,可能会导致线程再次进入阻塞状态,从而引起不必要的上下文切换。

2.2、优化 wait/notify 的使用,减少上下文切换

首先,我们在多个不同消费场景中,可以使用 Object.notify() 替代 Object.notifyAll()。 因为 Object.notify() 只会唤醒指定线程,不会过早地唤醒其它未满足需求的阻塞线程,所以可以减少相应的上下文切换。

其次,在生产者执行完 Object.notify() / notifyAll() 唤醒其它线程之后,应该尽快地释放内部锁,以避免其它线程在唤醒之后长时间地持有锁处理业务操作,这样可以避免被唤醒的线程再次申请相应内部锁的时候等待锁的释放。

最后,为了避免长时间等待,我们常会使用 Object.wait (long)设置等待超时时间,但线程无法区分其返回是由于等待超时还是被通知线程唤醒,从而导致线程再次尝试获取锁操作,增加了上下文切换。

这里我建议使用 Lock 锁结合 Condition 接口替代 Synchronized 内部锁中的 wait / notify,实现等待/通知。这样做不仅可以解决上述的 Object.wait(long) 无法区分的问题,还可以解决线程被过早唤醒的问题。

Condition 接口定义的 await 方法 、signal 方法和 signalAll 方法分别相当于 Object.wait()、 Object.notify() 和 Object.notifyAll()。

3、合理地设置线程池大小,避免创建过多线程

线程池的线程数量设置不宜过大,因为一旦线程池的工作线程总数超过系统所拥有的处理器数量,就会导致过多的上下文切换。更多关于如何合理设置线程池数量的内容,我将在第 18 讲中详解。

还有一种情况就是,在有些创建线程池的方法里,线程数量设置不会直接暴露给我们。比如,用 Executors.newCachedThreadPool() 创建的线程池,该线程池会复用其内部空闲的线程来处理新提交的任务,如果没有,再创建新的线程(不受 MAX_VALUE 限制),这样的线程池如果碰到大量且耗时长的任务场景,就会创建非常多的工作线程,从而导致频繁的上下文切换。因此,这类线程池就只适合处理大量且耗时短的非阻塞任务。

4、使用协程实现非阻塞等待

相信很多人一听到协程(Coroutines),马上想到的就是 Go 语言。协程对于大部分 Java 程序员来说可能还有点陌生,但其在 Go 中的使用相对来说已经很成熟了。

协程是一种比线程更加轻量级的东西,相比于由操作系统内核来管理的进程和线程,协程则完全由程序本身所控制,也就是在用户态执行。协程避免了像线程切换那样产生的上下文切换,在性能方面得到了很大的提升。

5、减少 Java 虚拟机的垃圾回收

很多 JVM 垃圾回收器(serial 收集器、ParNew 收集器)在回收旧对象时,会产生内存碎片,从而需要进行内存整理,在这个过程中就需要移动存活的对象。而移动内存对象就意味着这些对象所在的内存地址会发生变化,因此在移动对象前需要暂停线程,在移动完成后需要再次唤醒该线程。因此减少 JVM 垃圾回收的频率可以有效地减少上下文切换。

6、总结

上下文切换是多线程编程性能消耗的原因之一,而竞争锁、线程间的通信以及过多地创建线程等多线程编程操作,都会给系统带来上下文切换。除此之外,I/O 阻塞以及 JVM 的垃圾回收也会增加上下文切换。

总的来说,过于频繁的上下文切换会影响系统的性能,所以我们应该避免它。另外,我们还可以将上下文切换也作为系统的性能参考指标,并将该指标纳入到服务性能监控,防患于未然。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1100084.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

4.3 划分子网和构造超网

思维导图&#xff1a; 4.3.1 划分子网 **4.3 划分子网和构造超网笔记&#xff1a;** --- **4.3.1 划分子网** **1. 两级IP地址到三级IP地址的转变&#xff1a;** **关键点&#xff1a;** - **问题背景&#xff1a;** 早期的ARPANET对IP地址的设计存在不足&#xff1a; 1…

python 之f-strings 来格式化字符串

文章目录 当使用 f-strings 来格式化字符串时&#xff0c;可以在字符串中嵌入变量的值以及其他表达式的结果。以下是一些示例&#xff1a; 基本用法&#xff1a; name "Alice" age 30print(f"My name is {name} and I am {age} years old.")输出&#…

树莓派和arduino的恩恩怨怨

一、负责与树莓派互动的putty的会话经常断&#xff0c;不爽&#xff1a; 参考&#xff1a;【SSH】SSH自动断开连接的原因和解决办法|SSH保持长连接方法_ssh连上几秒就断开了_bandaoyu的博客-CSDN博客 用nano 1、修改 /etc/profile中改MOUT的值&#xff1a;export TMOUT0 ec…

Linux常见的指令合集

Linux指令合集 认识linuxlinux基础指令1.pwd 命令2. ls 命令3.cd 命令4. man 命令5. grep 命令6. ps 命令7. kill 命令8. netstat 命令9. date 查看当前系统时间10. echo 打印选项 -e linux文件操作指令1. mkdir 命令2. rmdir 命令3. touch 命令4. rm 命令5. mv 命令6. cp 命令…

【文件IO】文件系统的操作 流对象 字节流(Reader/Writer)和字符流 (InputStream/OutputStream)的用法

目录 1.文件系统的操作 (File类) 2.文件内容的读写 (Stream流对象) 2.1 字节流 2.2 字符流 2.3 如何判断输入输出&#xff1f; 2.4 reader读操作 (字符流) 2.5 文件描述符表 2.6 Writer写操作 (字符流) 2.7 InputStream (字节流) 2.8 OutputStream (字节流) 2.9 字节…

使用html2canvas将html转pdf,由于table表的水平和竖直有滚动条导致显示不全(或者有空白)

结果&#xff1a; 业务&#xff1a;将页面右侧的table打印成想要的格式的pdf&#xff0c;首先遇到的问题是table表上下左右都有滚轮而html2canvas相当于屏幕截图&#xff0c;那滚动区域如何显示出来是个问题&#xff1f; gif有点模糊&#xff0c;但是大致功能可以看出 可复制…

基于双级阈值及过零率的语音激活检测(VAD)

语音激活检测&#xff08;Voice Activity Detection, VAD&#xff09;:也称为端点检测&#xff0c;目的就是要找到音频信号的开始和结束位置。 时域方法&#xff1a; 音量&#xff1a;只用音量来进行端点检测&#xff0c;是最简单的方法&#xff0c;但是会对清音造成误判。音…

C#,数值计算——分类与推理Gaumixmod的计算方法与源程序

1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { public class Gaumixmod { private int nn { get; set; } private int kk { get; set; } private int mm { get; set; } private double…

力扣第17题 电话号码的字母组合 c++ 回溯 经典提升题

题目 17. 电话号码的字母组合 中等 相关标签 哈希表 字符串 回溯 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。…

Elasticsearch系列组件:Logstash强大的日志管理和数据分析工具

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…

sqlserver系统存储过程添加用户学习

sqlserver有一个系统存储过程sp_adduser&#xff1b;从名字看是添加用户的&#xff1b;操作一下&#xff0c; 从错误提示看还需要先添加一个登录名&#xff0c;再执行一个系统过程sp_addlogin看一下&#xff0c; 执行完之后看一下&#xff0c;安全性-登录名下面有了rabbit&…

【ARM Coresight Debug 系列 -- Linux 断点 BRK 中断使用详细介绍】

文章目录 1.1 ARM BRK 指令1.2 BRK 立即数宏定义介绍1.3 断点异常处理流程1.3.1 el1_sync_handler1.3.2 el1_dbg 跟踪 1.4 debug 异常处理函数注册1.4.1 brk 处理函数的注册 1.1 ARM BRK 指令 ARMv8 架构的 BRK 指令是用于生成一个软件断点的。当处理器执行到 BRK 指令时&…

电脑办公助手之桌面便签,助力高效率办公

在现代办公的快节奏中&#xff0c;大家有应接不暇的工作&#xff0c;每天面对着复杂的工作任务&#xff0c;总感觉时间不够用&#xff0c;而且工作无厘头。对于这种状态&#xff0c;大家可以选择在电脑上安装一款好用的办公便签软件来辅助日常办公。 敬业签是一款专为办公人士…

android--屏幕适配

基础概念 像素密度 dpi &#xff08; √宽^2高^2 &#xff09; / 屏幕大小 手机分辨率 1080 * 1920 1080代表宽 1920代表高 单位为px像素 屏幕大小为英寸 标准的像素密度 mdpi 160dpi dp 密度无关像素 dp与px的转换 density (dpi / 16…

python 之enumerate()函数

文章目录 enumerate() 是 Python 中的一个内置函数&#xff0c;它用于在遍历可迭代对象&#xff08;如列表、元组、字符串等&#xff09;时同时获取每个元素的索引和值。这个函数非常有用&#xff0c;因为它允许您在迭代过程中轻松地访问元素的索引&#xff0c;而不需要手动维护…

基于RuoYi-Flowable-Plus的若依ruoyi-nbcio支持自定义业务表单流程(二)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 之前讲到了流程保存的时候还要看是否是自定义业务流程应用类型&#xff0c;若是保存的时候不再检查是否有关…

常见三维建模软件有哪些?各自的特点是什么?

常见的三维建模软件包括以下这些&#xff1a; 1. 3DS Max 3D Studio Max&#xff0c;简称3DS MAX&#xff0c;是当今世界上销售量最大的三维建模、动画及渲染软件。它的应用范围广泛&#xff0c;包括计算机游戏中的动画制作、影视片的特效制作等。3DS MAX的操作相对容易&#…

幸运的袋子(递归+回溯)

目录 一、题目 二、代码 一、题目 幸运的袋子__牛客网 二、代码 #include <iostream> #include <vector> #include <algorithm> using namespace std;static int _count 0; static int sum 0; static int product 1;void Combination(vector<int>…

JAVA学习(6)-全网最详细~

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

【Proteus仿真】【51单片机】电蒸锅温度控制系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用LCD1602液晶、按键开关、蜂鸣器、DS18B20温度传感器&#xff0c;液位传感器、继电器控制加热保温装置等。 主要功能&#xff1a; 系统运行后&#…