二分查找的详解

news2025/1/17 14:06:17

## 1.3 二分查找 

二分查找算法也称折半查找,是一种非常高效的工作于有序数组的查找算法。后续的课程中还会学习更多的查找算法,但在此之前,不妨用它作为入门。

1) 基础版

需求:在**有序**数组 $A$ 内,查找值 $target$

* 如果找到返回索引
* 如果找不到返回 $-1$

算法描述

|      |                                                              |
| ---- | ------------------------------------------------------------ |
| 前提 | 给定一个内含 $n$ 个元素的有序数组 $A$,满足 $A_{0}\leq A_{1}\leq A_{2}\leq \cdots \leq A_{n-1}$,一个待查值 $target$ |
| 1    | 设置 $i=0$,$j=n-1$                                          |
| 2    | 如果 $i \gt j$,结束查找,没找到                             |
| 3    | 设置 $m = floor(\frac {i+j}{2})$ ,$m$ 为中间索引,$floor$ 是向下取整($\leq \frac {i+j}{2}$ 的最小整数) |
| 4    | 如果 $target < A_{m}$ 设置 $j = m - 1$,跳到第2步            |
| 5    | 如果 $A_{m} < target$ 设置 $i = m + 1$,跳到第2步            |
| 6    | 如果 $A_{m} = target$,结束查找,找到了                      |

> ***P.S.***
>
> * 对于一个算法来讲,都有较为严谨的描述,上面是一个例子
> * 后续讲解时,以简明直白为目标,不会总以上面的方式来描述算法

java 实现

* $i,j$ 对应着搜索区间 $[0,a.length-1]$(注意是闭合的区间),$i<=j$ 意味着搜索区间内还有未比较的元素,$i,j$ 指向的元素也可能是比较的目标
  * 思考:如果不加 $i==j$ 行不行?
  * 回答:不行,因为这意味着 $i,j$ 指向的元素会漏过比较
* $m$ 对应着中间位置,中间位置左边和右边的元素可能不相等(差一个),不会影响结果
* 如果某次未找到,那么缩小后的区间内不包含 $m$

### 2) 改变版

另一种写法

* $i,j$ 对应着搜索区间 $[0,a.length)$(注意是左闭右开的区间),$i<j$ 意味着搜索区间内还有未比较的元素,$j$ 指向的**一定不是**查找目标
  * 思考:为啥这次不加 $i==j$ 的条件了?
  * 回答:这回 $j$ 指向的不是查找目标,如果还加 $i==j$ 条件,就意味着 $j$ 指向的还会再次比较,找不到时,会死循环
* 如果某次要缩小右边界,那么 $j=m$,因为此时的 $m$ 已经**不是**查找目标了

1.4 衡量算法好坏

时间复杂度

下面的查找算法也能得出与之前二分查找一样的结果,那你能说出它差在哪里吗?

public static int search(int[] a, int k) {
    for (
        int i = 0;
        i < a.length;
        i++
    ) {
        if (a[i] == k) {
            return i;
        }
    }
    return -1;
}

考虑最坏情况下(没找到)例如 [1,2,3,4] 查找 5

  • int i = 0 只执行一次

  • i < a.length 受数组元素个数 $n$ 的影响,比较 $n+1$ 次

  • i++ 受数组元素个数 $n$ 的影响,自增 $n$ 次

  • a[i] == k 受元素个数 $n$ 的影响,比较 $n$ 次

  • return -1,执行一次

粗略认为每行代码执行时间是 $t$,假设 $n=4$ 那么

  • 总执行时间是 $(1+4+1+4+4+1)*t = 15t$

  • 可以推导出更一般地公式为,$T = (3*n+3)t$

如果套用二分查找算法,还是 [1,2,3,4] 查找 5

public static int binarySearch(int[] a, int target) {
    int i = 0, j = a.length - 1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {            // 在左边
            j = m - 1;
        } else if (a[m] < target) {     // 在右边
            i = m + 1;
        } else {
            return m;
        }
    }
    return -1;
}
  • int i = 0, j = a.length - 1 各执行 1 次

  • i <= j 比较 $floor(\log_{2}(n)+1)$ 再加 1 次

  • (i + j) >>> 1 计算 $floor(\log_{2}(n)+1)$ 次

  • 接下来 if() else if() else 会执行 $3* floor(\log_{2}(n)+1)$ 次,分别为

    • if 比较

    • else if 比较

    • else if 比较成立后的赋值语句

  • return -1,执行一次

结果:

  • 总执行时间为 $(2 + (1+3) + 3 + 3 * 3 +1)*t = 19t$

  • 更一般地公式为 $(4 + 5 * floor(\log_{2}(n)+1))*t$

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1096115.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【教程】使用vuepress构建静态文档网站,并部署到github上

官网 快速上手 | VuePress (vuejs.org) 构建项目 我们跟着官网的教程先构建一个demo 这里我把 vuepress-starter 这个项目名称换成了 howtolive 创建并进入一个新目录 mkdir howtolive && cd howtolive使用你喜欢的包管理器进行初始化 yarn init 这里的问题可以一…

可观测 AIOps 的智能监控和诊断实践丨QCon 全球软件开发大会总结

作者&#xff1a;董善东&#xff08;梵登&#xff09; 本文是作者于 9 月 5 日在 QCon 北京 2023&#xff08;全球软件开发大会&#xff09;上做的《阿里云可观测 AIOps 的智能监控和诊断实践》专题演讲文字版。 大家上午好&#xff0c;很高兴可以在 QCon 稳定性和可观测的场…

优化网站以提升原创性和性能

一、创新性构建网站框架 1. 精简页面渲染流程&#xff1a;杜绝多余的代码和无谓的图像&#xff0c;利用CDN快速资源分发&#xff0c;以精减加载时间。 2. 精心规划内容层次&#xff1a;借助恰如其分的标题和精炼描述&#xff0c;迅速揭示页面精髓&#xff0c;满足搜索引擎智慧…

基于社会群体优化的BP神经网络(分类应用) - 附代码

基于社会群体优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于社会群体优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.社会群体优化BP神经网络3.1 BP神经网络参数设置3.2 社会群体算法应用 4.测试结果…

【网络安全 --- Burp Suite抓包工具】学网安必不可少的Burp Suite工具的安装及配置

一&#xff0c;下载JDK 由于BP是java语言开发的&#xff0c;运行环境需要安装好Java的JDK&#xff0c;不然程序没法运行&#xff0c;首先下载Java的JDK 下载网址&#xff1a; 国内&#xff1a; https://www.java.com/zh-CN/download/https://www.java.com/zh-CN/download/ 国外…

前端开发新趋势:Web3、区块链与虚拟现实

文章目录 Web3&#xff1a;下一代互联网区块链技术去中心化应用程序&#xff08;DApps&#xff09; 区块链&#xff1a;重塑数字世界数字钱包NFT&#xff08;非同质化代币&#xff09; 虚拟现实&#xff1a;沉浸式体验WebVR和WebXR三维图形 新挑战与机会性能与复杂性安全性创新…

c++视觉处理----分水岭算法

分水岭算法 分水岭算法是一种图像处理和分割算法&#xff0c;通常用于分离数字图像中的不同对象或区域。该算法的名称来自地理学中的"分水岭"概念&#xff0c;其中高地图上的山脊分割了不同的水流方向&#xff0c;类似地&#xff0c;分水岭算法可以分割图像中的不同…

Ai_drive _103_重新思考图像融合策略和自监督对比学习

近先进的无监督学习方法使用类似连体的框架来比较来自同一图像的两个“视图”以进行学习表示。使这两种观点与众不同的是保证无监督方法可以学习有意义信息核心。但是&#xff0c;如果用于生成两个视图的增强不够强&#xff0c;则此类框架有时会在过度拟合方面变得脆弱&#xf…

VL53L5CX驱动开发(4)----运动指示器

VL53L5CX驱动开发----4.运动指示器 概述视频教学样品申请源码下载生成STM32CUBEMX选择MCU串口配置IIC配置 INT设置配置使能与复位X-CUBE-TOF1串口重定向代码配置检测流程TOF代码配置主程序演示结果 概述 VL53L5CX传感器内置了一个固件功能&#xff0c;可以检测场景中的运动。这…

【算法|动态规划No.21】leetcode494. 目标和

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

Redis的五大基础数据类型

String 字符串类型&#xff0c;通过set关键字和get关键字来设置字符串键值对和获取字符串键值对。 hash 哈希类型&#xff0c;结构和Map<String,Map<String,stirng>>类似。 使用hset来设置哈希&#xff0c;使用hget来获取哈希&#xff0c;hget要精确到第二个key…

【深度学习 | Transformer】释放注意力的力量:探索深度学习中的 变形金刚,一文带你读通各个模块 —— Positional Encoding(一)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

Python深度学习实践代码实现

线性模型 课程 代码 import numpy as np import matplotlib.pyplot as plt x_data[1.0,2.0,3.0] y_data[2.0,4.0,6.0] #前馈函数 def forward(x):return x*w #损失函数 def loss(x,y):y_predforward(x)return (y_pred-y)*(y_pred-y) w_list[] mse_list[] for w in np.arange…

2.Javaweb模块基本

1.1web基本 session 和 cookie 有什么区别&#xff1f; 存储位置不同&#xff1a;session 存储在服务器端&#xff1b;cookie 存储在浏览器端。 安全性不同&#xff1a;cookie 安全性一般&#xff0c;在浏览器存储&#xff0c;可以被伪造和修改。 容量和个数限制&#xff1a;…

浅讲make/makefile【linux】

浅讲make/makefile【linux】 一. 什么是make/makefile&#xff1f;二. makefile2.1 依赖关系与依赖方法2.2 浅用make2.2.1 make test2.2.2 clean 2.2 make一次执行多步2.3 部分修饰符号2.3.1 .PHONY(伪目标)2.3.2 2.3.3 $ $^ 一. 什么是make/makefile&#xff1f; make/makefi…

uml知识点学习

https://zhuanlan.zhihu.com/p/659911315https://zhuanlan.zhihu.com/p/659911315软件工程分析设计图库目录 - 知乎一、结构化绘图1. 结构化——数据流图Chilan Yuk&#xff1a;1. 结构化——数据流图2. 结构化——数据字典Chilan Yuk&#xff1a;2. 结构化——数据字典3. 结构…

“理解梯度下降:直觉、数学公式和推导”

一、说明 梯度下降是机器学习中使用的一种流行的优化算法&#xff0c;通过迭代调整函数的参数来最小化函数。基本思想是将函数的参数沿函数梯度最陡峭下降的方向移动。 二、关于梯度的叙述 简单来说&#xff0c;想象一下你在山顶&#xff0c;你想尽快到达山脚下。你可以开始下坡…

流程图规范

文章目录 1.符号概览2.要求2.1 从上至下&#xff0c;从左至右的流向顺序2.2 开始符号只能有一个出口2.3 进程符号不做逻辑校验2.4 相同流程图&#xff0c;符号大小应为一致2.5 引用流程&#xff0c;而不是重复绘制2.6 路径符号应尽量避免相互交叉2.7 同一路径&#xff0c;箭头只…

【Python】Python语言基础(下)

目录 第十一章 控制结构 for语句 if语句 while语句 第十二章 函数 函数介绍 函数的定义 函数的调用 函数的传参 函数的传参方式 位置实参 关键字实参 默认值实参 函数的返回值 函数传递未知数量的实参 函数的模块调用 调用整个模块 调用模块中特定功能 第十…

业财融合潮流下,构建国有企业全面预算管理体系

近年来&#xff0c;在我国快速发展的变革过程中&#xff0c;国有企业改革的持续深入需要积极结合市场环境和自身发展需求&#xff0c;然而其传统的财务管理模式难以适应企业提出的新要求&#xff0c;预算管理与经营销售之间不断出现隔阂。为确保全面预算管理在国有企业内部的良…