Python深度学习实践代码实现

news2025/1/17 21:53:57

线性模型

课程

代码

import numpy as np
import matplotlib.pyplot as plt
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
#前馈函数
def forward(x):
    return x*w
#损失函数
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)*(y_pred-y)
w_list=[]
mse_list=[]
for w in np.arange(0.0,4.1,0.1):
    print("w=",w)
    l_sum=0
    for x_v,y_v in zip(x_data,y_data):
        loss_v=loss(x_v,y_v)
        l_sum+=loss_v
        print(x_v,y_v,loss_v)
    l_sum/=3
    print("MSE=",l_sum)
    w_list.append(w)
    mse_list.append(l_sum)
plt.plot(w_list,mse_list)
plt.xlabel('w')
plt.ylabel('loss')
plt.show()

结果

在这里插入图片描述

w= 0.0
1.0 2.0 4.0
2.0 4.0 16.0
3.0 6.0 36.0
MSE= 18.666666666666668
w= 0.1
1.0 2.0 3.61
2.0 4.0 14.44
3.0 6.0 32.49
MSE= 16.846666666666668
w= 0.2
1.0 2.0 3.24
2.0 4.0 12.96
3.0 6.0 29.160000000000004
MSE= 15.120000000000003
w= 0.30000000000000004
1.0 2.0 2.8899999999999997
2.0 4.0 11.559999999999999
3.0 6.0 26.009999999999998
MSE= 13.486666666666665
w= 0.4
1.0 2.0 2.5600000000000005
2.0 4.0 10.240000000000002
3.0 6.0 23.04
MSE= 11.946666666666667
w= 0.5
1.0 2.0 2.25
2.0 4.0 9.0
3.0 6.0 20.25
MSE= 10.5
w= 0.6000000000000001
1.0 2.0 1.9599999999999997
2.0 4.0 7.839999999999999
3.0 6.0 17.639999999999993
MSE= 9.146666666666663
w= 0.7000000000000001
1.0 2.0 1.6899999999999995
2.0 4.0 6.759999999999998
3.0 6.0 15.209999999999999
MSE= 7.886666666666666
w= 0.8
1.0 2.0 1.44
2.0 4.0 5.76
3.0 6.0 12.959999999999997
MSE= 6.719999999999999
w= 0.9
1.0 2.0 1.2100000000000002
2.0 4.0 4.840000000000001
3.0 6.0 10.889999999999999
MSE= 5.646666666666666
w= 1.0
1.0 2.0 1.0
2.0 4.0 4.0
3.0 6.0 9.0
MSE= 4.666666666666667
w= 1.1
1.0 2.0 0.8099999999999998
2.0 4.0 3.2399999999999993
3.0 6.0 7.289999999999998
MSE= 3.779999999999999
w= 1.2000000000000002
1.0 2.0 0.6399999999999997
2.0 4.0 2.5599999999999987
3.0 6.0 5.759999999999997
MSE= 2.986666666666665
w= 1.3
1.0 2.0 0.48999999999999994
2.0 4.0 1.9599999999999997
3.0 6.0 4.409999999999998
MSE= 2.2866666666666657
w= 1.4000000000000001
1.0 2.0 0.3599999999999998
2.0 4.0 1.4399999999999993
3.0 6.0 3.2399999999999993
MSE= 1.6799999999999995
w= 1.5
1.0 2.0 0.25
2.0 4.0 1.0
3.0 6.0 2.25
MSE= 1.1666666666666667
w= 1.6
1.0 2.0 0.15999999999999992
2.0 4.0 0.6399999999999997
3.0 6.0 1.4399999999999984
MSE= 0.746666666666666
w= 1.7000000000000002
1.0 2.0 0.0899999999999999
2.0 4.0 0.3599999999999996
3.0 6.0 0.809999999999999
MSE= 0.4199999999999995
w= 1.8
1.0 2.0 0.03999999999999998
2.0 4.0 0.15999999999999992
3.0 6.0 0.3599999999999996
MSE= 0.1866666666666665
w= 1.9000000000000001
1.0 2.0 0.009999999999999974
2.0 4.0 0.0399999999999999
3.0 6.0 0.0899999999999999
MSE= 0.046666666666666586
w= 2.0
1.0 2.0 0.0
2.0 4.0 0.0
3.0 6.0 0.0
MSE= 0.0
w= 2.1
1.0 2.0 0.010000000000000018
2.0 4.0 0.04000000000000007
3.0 6.0 0.09000000000000043
MSE= 0.046666666666666835
w= 2.2
1.0 2.0 0.04000000000000007
2.0 4.0 0.16000000000000028
3.0 6.0 0.36000000000000065
MSE= 0.18666666666666698
w= 2.3000000000000003
1.0 2.0 0.09000000000000016
2.0 4.0 0.36000000000000065
3.0 6.0 0.8100000000000006
MSE= 0.42000000000000054
w= 2.4000000000000004
1.0 2.0 0.16000000000000028
2.0 4.0 0.6400000000000011
3.0 6.0 1.4400000000000026
MSE= 0.7466666666666679
w= 2.5
1.0 2.0 0.25
2.0 4.0 1.0
3.0 6.0 2.25
MSE= 1.1666666666666667
w= 2.6
1.0 2.0 0.3600000000000001
2.0 4.0 1.4400000000000004
3.0 6.0 3.2400000000000024
MSE= 1.6800000000000008
w= 2.7
1.0 2.0 0.49000000000000027
2.0 4.0 1.960000000000001
3.0 6.0 4.410000000000006
MSE= 2.2866666666666693
w= 2.8000000000000003
1.0 2.0 0.6400000000000005
2.0 4.0 2.560000000000002
3.0 6.0 5.760000000000002
MSE= 2.986666666666668
w= 2.9000000000000004
1.0 2.0 0.8100000000000006
2.0 4.0 3.2400000000000024
3.0 6.0 7.290000000000005
MSE= 3.780000000000003
w= 3.0
1.0 2.0 1.0
2.0 4.0 4.0
3.0 6.0 9.0
MSE= 4.666666666666667
w= 3.1
1.0 2.0 1.2100000000000002
2.0 4.0 4.840000000000001
3.0 6.0 10.890000000000004
MSE= 5.646666666666668
w= 3.2
1.0 2.0 1.4400000000000004
2.0 4.0 5.760000000000002
3.0 6.0 12.96000000000001
MSE= 6.720000000000003
w= 3.3000000000000003
1.0 2.0 1.6900000000000006
2.0 4.0 6.7600000000000025
3.0 6.0 15.210000000000003
MSE= 7.886666666666668
w= 3.4000000000000004
1.0 2.0 1.960000000000001
2.0 4.0 7.840000000000004
3.0 6.0 17.640000000000008
MSE= 9.14666666666667
w= 3.5
1.0 2.0 2.25
2.0 4.0 9.0
3.0 6.0 20.25
MSE= 10.5
w= 3.6
1.0 2.0 2.5600000000000005
2.0 4.0 10.240000000000002
3.0 6.0 23.040000000000006
MSE= 11.94666666666667
w= 3.7
1.0 2.0 2.8900000000000006
2.0 4.0 11.560000000000002
3.0 6.0 26.010000000000016
MSE= 13.486666666666673
w= 3.8000000000000003
1.0 2.0 3.240000000000001
2.0 4.0 12.960000000000004
3.0 6.0 29.160000000000004
MSE= 15.120000000000005
w= 3.9000000000000004
1.0 2.0 3.610000000000001
2.0 4.0 14.440000000000005
3.0 6.0 32.49000000000001
MSE= 16.84666666666667
w= 4.0
1.0 2.0 4.0
2.0 4.0 16.0
3.0 6.0 36.0
MSE= 18.666666666666668

作业

代码

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#令y=2x+1
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
def forward(x):
    return x*w+b
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)*(y_pred-y)
w_list=np.arange(0.0,4.0,0.1)
b_list=np.arange(-2.0,2.0,0.1)
mse_list=[]
for w in np.arange(0.0,4.0,0.1):
    for b in np.arange(-2.0,2.0,0.1):
        print("w=",w)
        print("b=",b)
        l_sum=0
        for x_v,y_v in zip(x_data,y_data):
            loss_v=loss(x_v,y_v)
            l_sum+=loss_v
            print(x_v,y_v,loss_v)
        l_sum/=3
        print("MSE=",l_sum)
        mse_list.append(l_sum)
#将一维的数值转变为二维坐标点
w,b=np.meshgrid(w_list,b_list)
#调整形状并转置,以适应w,b的坐标
mse=np.array(mse_list)
mse=np.transpose(mse.reshape(40,40))
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w,b,mse,cmap=plt.get_cmap('rainbow'))
plt.show()

结果

在这里插入图片描述

梯度下降算法

课程

初始梯度下降算法

代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#令y=2x+1
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w=1.0
def forward(x):
    return x*w
def cost(xs,ys):
    cost=0
    for x,y in zip(xs,ys):
        cost+=(forward(x)-y)**2
    return cost/len(xs)
def gradient(xs,ys):
    grad=0
    for x,y in zip(xs,ys):
        grad+=2*x*(forward(x)-y)
    return grad/len(xs)
print("Predict (before training)",4,forward(4))
cost_list=[]
epoch_list=[]
for epoch in range(100):
    cost_v=cost(x_data,y_data)
    grad_v=gradient(x_data,y_data)
    w-=0.01*grad_v
    cost_list.append(cost_v)
    epoch_list.append(epoch)
    print("Epoch:",epoch,"w=:",w,"cost=",cost_v)
print("Predict (after training)",4,forward(4))
plt.plot(epoch_list,cost_list)
plt.xlabel("Epoch")
plt.ylabel("Cost")
plt.show()
结果

在这里插入图片描述

Predict (before training) 4 4.0
Epoch: 0 w=: 1.0933333333333333 cost= 4.666666666666667
Epoch: 1 w=: 1.1779555555555554 cost= 3.8362074074074086
Epoch: 2 w=: 1.2546797037037036 cost= 3.1535329869958857
Epoch: 3 w=: 1.3242429313580246 cost= 2.592344272332262
Epoch: 4 w=: 1.3873135910979424 cost= 2.1310222071581117
Epoch: 5 w=: 1.4444976559288012 cost= 1.7517949663820642
Epoch: 6 w=: 1.4963445413754464 cost= 1.440053319920117
Epoch: 7 w=: 1.5433523841804047 cost= 1.1837878313441108
Epoch: 8 w=: 1.5859728283235668 cost= 0.9731262101573632
Epoch: 9 w=: 1.6246153643467005 cost= 0.7999529948031382
Epoch: 10 w=: 1.659651263674342 cost= 0.6575969151946154
Epoch: 11 w=: 1.6914171457314033 cost= 0.5405738908195378
Epoch: 12 w=: 1.7202182121298057 cost= 0.44437576375991855
Epoch: 13 w=: 1.7463311789976905 cost= 0.365296627844598
Epoch: 14 w=: 1.7700069356245727 cost= 0.3002900634939416
Epoch: 15 w=: 1.7914729549662791 cost= 0.2468517784170642
Epoch: 16 w=: 1.8109354791694263 cost= 0.2029231330489788
Epoch: 17 w=: 1.8285815011136133 cost= 0.16681183417217407
Epoch: 18 w=: 1.8445805610096762 cost= 0.1371267415488235
Epoch: 19 w=: 1.8590863753154396 cost= 0.11272427607497944
Epoch: 20 w=: 1.872238313619332 cost= 0.09266436490145864
Epoch: 21 w=: 1.8841627376815275 cost= 0.07617422636521683
Epoch: 22 w=: 1.8949742154979183 cost= 0.06261859959338009
Epoch: 23 w=: 1.904776622051446 cost= 0.051475271914629306
Epoch: 24 w=: 1.9136641373266443 cost= 0.04231496130368814
Epoch: 25 w=: 1.9217221511761575 cost= 0.03478477885657844
Epoch: 26 w=: 1.9290280837330496 cost= 0.02859463421027894
Epoch: 27 w=: 1.9356521292512983 cost= 0.023506060193480772
Epoch: 28 w=: 1.9416579305211772 cost= 0.01932302619282764
Epoch: 29 w=: 1.9471031903392007 cost= 0.015884386331668398
Epoch: 30 w=: 1.952040225907542 cost= 0.01305767153735723
Epoch: 31 w=: 1.9565164714895047 cost= 0.010733986344664803
Epoch: 32 w=: 1.9605749341504843 cost= 0.008823813841374291
Epoch: 33 w=: 1.9642546069631057 cost= 0.007253567147113681
Epoch: 34 w=: 1.9675908436465492 cost= 0.005962754575689583
Epoch: 35 w=: 1.970615698239538 cost= 0.004901649272531298
Epoch: 36 w=: 1.9733582330705144 cost= 0.004029373553099482
Epoch: 37 w=: 1.975844797983933 cost= 0.0033123241439168096
Epoch: 38 w=: 1.9780992835054327 cost= 0.0027228776607060357
Epoch: 39 w=: 1.980143350378259 cost= 0.002238326453885249
Epoch: 40 w=: 1.9819966376762883 cost= 0.001840003826269386
Epoch: 41 w=: 1.983676951493168 cost= 0.0015125649231412608
Epoch: 42 w=: 1.9852004360204722 cost= 0.0012433955919298103
Epoch: 43 w=: 1.9865817286585614 cost= 0.0010221264385926248
Epoch: 44 w=: 1.987834100650429 cost= 0.0008402333603648631
Epoch: 45 w=: 1.9889695845897222 cost= 0.0006907091659248264
Epoch: 46 w=: 1.9899990900280147 cost= 0.0005677936325753796
Epoch: 47 w=: 1.9909325082920666 cost= 0.0004667516012495216
Epoch: 48 w=: 1.9917788075181404 cost= 0.000383690560742734
Epoch: 49 w=: 1.9925461188164473 cost= 0.00031541069384432885
Epoch: 50 w=: 1.9932418143935788 cost= 0.0002592816085930997
Epoch: 51 w=: 1.9938725783835114 cost= 0.0002131410058905752
Epoch: 52 w=: 1.994444471067717 cost= 0.00017521137977565514
Epoch: 53 w=: 1.9949629871013967 cost= 0.0001440315413480261
Epoch: 54 w=: 1.9954331083052663 cost= 0.0001184003283899171
Epoch: 55 w=: 1.9958593515301082 cost= 9.733033217332803e-05
Epoch: 56 w=: 1.9962458120539648 cost= 8.000985883901657e-05
Epoch: 57 w=: 1.9965962029289281 cost= 6.57716599593935e-05
Epoch: 58 w=: 1.9969138906555615 cost= 5.406722767150764e-05
Epoch: 59 w=: 1.997201927527709 cost= 4.444566413387458e-05
Epoch: 60 w=: 1.9974630809584561 cost= 3.65363112808981e-05
Epoch: 61 w=: 1.9976998600690001 cost= 3.0034471708953996e-05
Epoch: 62 w=: 1.9979145397958935 cost= 2.4689670610172655e-05
Epoch: 63 w=: 1.9981091827482769 cost= 2.0296006560253656e-05
Epoch: 64 w=: 1.9982856590251044 cost= 1.6684219437262796e-05
Epoch: 65 w=: 1.9984456641827613 cost= 1.3715169898293847e-05
Epoch: 66 w=: 1.9985907355257035 cost= 1.1274479219506377e-05
Epoch: 67 w=: 1.9987222668766378 cost= 9.268123006398985e-06
Epoch: 68 w=: 1.9988415219681517 cost= 7.61880902783969e-06
Epoch: 69 w=: 1.9989496465844576 cost= 6.262999634617916e-06
Epoch: 70 w=: 1.9990476795699081 cost= 5.1484640551938914e-06
Epoch: 71 w=: 1.9991365628100501 cost= 4.232266273994499e-06
Epoch: 72 w=: 1.999217150281112 cost= 3.479110977946351e-06
Epoch: 73 w=: 1.999290216254875 cost= 2.859983851026929e-06
Epoch: 74 w=: 1.9993564627377531 cost= 2.3510338359374262e-06
Epoch: 75 w=: 1.9994165262155628 cost= 1.932654303533636e-06
Epoch: 76 w=: 1.999470983768777 cost= 1.5887277332523938e-06
Epoch: 77 w=: 1.9995203586170245 cost= 1.3060048068548734e-06
Epoch: 78 w=: 1.9995651251461022 cost= 1.0735939958924364e-06
Epoch: 79 w=: 1.9996057134657994 cost= 8.825419799121559e-07
Epoch: 80 w=: 1.9996425135423248 cost= 7.254887315754342e-07
Epoch: 81 w=: 1.999675878945041 cost= 5.963839812987369e-07
Epoch: 82 w=: 1.999706130243504 cost= 4.902541385825727e-07
Epoch: 83 w=: 1.9997335580874436 cost= 4.0301069098738336e-07
Epoch: 84 w=: 1.9997584259992822 cost= 3.312926995781724e-07
Epoch: 85 w=: 1.9997809729060159 cost= 2.723373231729343e-07
Epoch: 86 w=: 1.9998014154347876 cost= 2.2387338352920307e-07
Epoch: 87 w=: 1.9998199499942075 cost= 1.8403387118941732e-07
Epoch: 88 w=: 1.9998367546614149 cost= 1.5128402140063082e-07
Epoch: 89 w=: 1.9998519908930161 cost= 1.2436218932547864e-07
Epoch: 90 w=: 1.9998658050763347 cost= 1.0223124683409346e-07
Epoch: 91 w=: 1.9998783299358769 cost= 8.403862850836479e-08
Epoch: 92 w=: 1.9998896858085284 cost= 6.908348768398496e-08
Epoch: 93 w=: 1.9998999817997325 cost= 5.678969725349543e-08
Epoch: 94 w=: 1.9999093168317574 cost= 4.66836551287917e-08
Epoch: 95 w=: 1.9999177805941268 cost= 3.8376039345125727e-08
Epoch: 96 w=: 1.9999254544053418 cost= 3.154680994333735e-08
Epoch: 97 w=: 1.9999324119941766 cost= 2.593287985380858e-08
Epoch: 98 w=: 1.9999387202080534 cost= 2.131797981222471e-08
Epoch: 99 w=: 1.9999444396553017 cost= 1.752432687141379e-08
Predict (after training) 4 7.999777758621207

随机梯度下降算法

在梯度下降中可能遇到导数为0的鞍点,使得w无法进行迭代,采用随机梯度下降可以利用噪声使迭代继续进行

代码
import numpy as np
import matplotlib.pyplot as plt
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w=1.0
#前馈函数
def forward(x):
    return x*w
#损失函数
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)*(y_pred-y)
def gradient(x,y):
    return 2*x*(forward(x)-y)
cost_list=[]
epoch_list=[]
print("Predict (before training)",4,forward(4))
for epoch in range(100):
    cost_v=0
    for x,y in zip(x_data,y_data):
        grad=gradient(x,y)
        w-=0.01*grad
        print("\tgrad:",x,y,grad)
        cost_v+=loss(x,y)
    cost_list.append(cost_v)
    epoch_list.append(epoch)
    print("Epoch:",epoch,"w=:",w,"cost=",cost_v)
print("Predict (after training)",4,forward(4))
plt.plot(epoch_list,cost_list)
plt.xlabel("Epoch")
plt.ylabel("Cost")
plt.show()
结果

在这里插入图片描述

Predict (before training) 4 4.0
grad: 1.0 2.0 -2.0
grad: 2.0 4.0 -7.84
grad: 3.0 6.0 -16.2288
Epoch: 0 w=: 1.260688 cost= 9.131170340095998
grad: 1.0 2.0 -1.478624
grad: 2.0 4.0 -5.796206079999999
grad: 3.0 6.0 -11.998146585599997
Epoch: 1 w=: 1.453417766656 cost= 4.990935477534164
grad: 1.0 2.0 -1.093164466688
grad: 2.0 4.0 -4.285204709416961
grad: 3.0 6.0 -8.87037374849311
Epoch: 2 w=: 1.5959051959019805 cost= 2.727956659786429
grad: 1.0 2.0 -0.8081896081960389
grad: 2.0 4.0 -3.1681032641284723
grad: 3.0 6.0 -6.557973756745939
Epoch: 3 w=: 1.701247862192685 cost= 1.4910526435717042
grad: 1.0 2.0 -0.59750427561463
grad: 2.0 4.0 -2.3422167604093502
grad: 3.0 6.0 -4.848388694047353
Epoch: 4 w=: 1.7791289594933983 cost= 0.814982883956898
grad: 1.0 2.0 -0.44174208101320334
grad: 2.0 4.0 -1.7316289575717576
grad: 3.0 6.0 -3.584471942173538
Epoch: 5 w=: 1.836707389300983 cost= 0.4454551648502959
grad: 1.0 2.0 -0.3265852213980338
grad: 2.0 4.0 -1.2802140678802925
grad: 3.0 6.0 -2.650043120512205
Epoch: 6 w=: 1.8792758133988885 cost= 0.24347787885849426
grad: 1.0 2.0 -0.241448373202223
grad: 2.0 4.0 -0.946477622952715
grad: 3.0 6.0 -1.9592086795121197
Epoch: 7 w=: 1.910747160155559 cost= 0.13308068279633564
grad: 1.0 2.0 -0.17850567968888198
grad: 2.0 4.0 -0.6997422643804168
grad: 3.0 6.0 -1.4484664872674653
Epoch: 8 w=: 1.9340143044689266 cost= 0.07273953681776574
grad: 1.0 2.0 -0.13197139106214673
grad: 2.0 4.0 -0.5173278529636143
grad: 3.0 6.0 -1.0708686556346834
Epoch: 9 w=: 1.9512159834655312 cost= 0.03975813848626224
grad: 1.0 2.0 -0.09756803306893769
grad: 2.0 4.0 -0.38246668963023644
grad: 3.0 6.0 -0.7917060475345892
Epoch: 10 w=: 1.9639333911678687 cost= 0.02173109212742138
grad: 1.0 2.0 -0.07213321766426262
grad: 2.0 4.0 -0.2827622132439096
grad: 3.0 6.0 -0.5853177814148953
Epoch: 11 w=: 1.9733355232910992 cost= 0.011877828868010278
grad: 1.0 2.0 -0.05332895341780164
grad: 2.0 4.0 -0.2090494973977819
grad: 3.0 6.0 -0.4327324596134101
Epoch: 12 w=: 1.9802866323953892 cost= 0.006492210229954897
grad: 1.0 2.0 -0.039426735209221686
grad: 2.0 4.0 -0.15455280202014876
grad: 3.0 6.0 -0.3199243001817109
Epoch: 13 w=: 1.9854256707695 cost= 0.003548526766827499
grad: 1.0 2.0 -0.02914865846100012
grad: 2.0 4.0 -0.11426274116712065
grad: 3.0 6.0 -0.2365238742159388
Epoch: 14 w=: 1.9892250235079405 cost= 0.0019395616852935693
grad: 1.0 2.0 -0.021549952984118992
grad: 2.0 4.0 -0.08447581569774698
grad: 3.0 6.0 -0.17486493849433593
Epoch: 15 w=: 1.9920339305797026 cost= 0.0010601299576561939
grad: 1.0 2.0 -0.015932138840594856
grad: 2.0 4.0 -0.062453984255132156
grad: 3.0 6.0 -0.12927974740812687
Epoch: 16 w=: 1.994110589284741 cost= 0.000579448199890608
grad: 1.0 2.0 -0.011778821430517894
grad: 2.0 4.0 -0.046172980007630926
grad: 3.0 6.0 -0.09557806861579543
Epoch: 17 w=: 1.9956458879852805 cost= 0.0003167160912033633
grad: 1.0 2.0 -0.008708224029438938
grad: 2.0 4.0 -0.03413623819540135
grad: 3.0 6.0 -0.07066201306448505
Epoch: 18 w=: 1.9967809527381737 cost= 0.00017311138846592646
grad: 1.0 2.0 -0.006438094523652627
grad: 2.0 4.0 -0.02523733053271826
grad: 3.0 6.0 -0.052241274202728505
Epoch: 19 w=: 1.9976201197307648 cost= 9.461960932498085e-05
grad: 1.0 2.0 -0.004759760538470381
grad: 2.0 4.0 -0.01865826131080439
grad: 3.0 6.0 -0.03862260091336722
Epoch: 20 w=: 1.998240525958391 cost= 5.171739738298014e-05
grad: 1.0 2.0 -0.0035189480832178432
grad: 2.0 4.0 -0.01379427648621423
grad: 3.0 6.0 -0.028554152326460525
Epoch: 21 w=: 1.99869919972735 cost= 2.8267810564328208e-05
grad: 1.0 2.0 -0.002601600545300009
grad: 2.0 4.0 -0.01019827413757568
grad: 3.0 6.0 -0.021110427464781978
Epoch: 22 w=: 1.9990383027488265 cost= 1.5450683029998435e-05
grad: 1.0 2.0 -0.001923394502346909
grad: 2.0 4.0 -0.007539706449199102
grad: 3.0 6.0 -0.01560719234984198
Epoch: 23 w=: 1.9992890056818404 cost= 8.445068837224808e-06
grad: 1.0 2.0 -0.0014219886363191492
grad: 2.0 4.0 -0.005574195454370212
grad: 3.0 6.0 -0.011538584590544687
Epoch: 24 w=: 1.999474353368653 cost= 4.61592458579276e-06
grad: 1.0 2.0 -0.0010512932626940419
grad: 2.0 4.0 -0.004121069589761106
grad: 3.0 6.0 -0.008530614050808794
Epoch: 25 w=: 1.9996113831376856 cost= 2.522982369050795e-06
grad: 1.0 2.0 -0.0007772337246287897
grad: 2.0 4.0 -0.0030467562005451754
grad: 3.0 6.0 -0.006306785335127074
Epoch: 26 w=: 1.9997126908902887 cost= 1.379017337962252e-06
grad: 1.0 2.0 -0.0005746182194226179
grad: 2.0 4.0 -0.002252503420136165
grad: 3.0 6.0 -0.00466268207967957
Epoch: 27 w=: 1.9997875889274812 cost= 7.537463764030389e-07
grad: 1.0 2.0 -0.0004248221450375844
grad: 2.0 4.0 -0.0016653028085471533
grad: 3.0 6.0 -0.0034471768136938863
Epoch: 28 w=: 1.9998429619451539 cost= 4.119843777895263e-07
grad: 1.0 2.0 -0.00031407610969225175
grad: 2.0 4.0 -0.0012311783499932005
grad: 3.0 6.0 -0.0025485391844828342
Epoch: 29 w=: 1.9998838998815958 cost= 2.2518334131447684e-07
grad: 1.0 2.0 -0.00023220023680847746
grad: 2.0 4.0 -0.0009102249282886277
grad: 3.0 6.0 -0.0018841656015560204
Epoch: 30 w=: 1.9999141657892625 cost= 1.230812136072453e-07
grad: 1.0 2.0 -0.00017166842147497974
grad: 2.0 4.0 -0.0006729402121816719
grad: 3.0 6.0 -0.0013929862392156878
Epoch: 31 w=: 1.9999365417379913 cost= 6.72740046159769e-08
grad: 1.0 2.0 -0.0001269165240174175
grad: 2.0 4.0 -0.0004975127741477792
grad: 3.0 6.0 -0.0010298514424817995
Epoch: 32 w=: 1.9999530845453979 cost= 3.677077568883698e-08
grad: 1.0 2.0 -9.383090920422887e-05
grad: 2.0 4.0 -0.00036781716408107457
grad: 3.0 6.0 -0.0007613815296476645
Epoch: 33 w=: 1.9999653148414271 cost= 2.009825269786531e-08
grad: 1.0 2.0 -6.937031714571162e-05
grad: 2.0 4.0 -0.0002719316432120422
grad: 3.0 6.0 -0.0005628985014531906
Epoch: 34 w=: 1.999974356846045 cost= 1.0985347846020229e-08
grad: 1.0 2.0 -5.1286307909848006e-05
grad: 2.0 4.0 -0.00020104232700646207
grad: 3.0 6.0 -0.0004161576169003922
Epoch: 35 w=: 1.9999810417085633 cost= 6.004395959775294e-09
grad: 1.0 2.0 -3.7916582873442906e-05
grad: 2.0 4.0 -0.0001486330048638962
grad: 3.0 6.0 -0.0003076703200690645
Epoch: 36 w=: 1.9999859839076413 cost= 3.2818961535760077e-09
grad: 1.0 2.0 -2.8032184717474706e-05
grad: 2.0 4.0 -0.0001098861640933535
grad: 3.0 6.0 -0.00022746435967313516
Epoch: 37 w=: 1.9999896377347262 cost= 1.7938261292475793e-09
grad: 1.0 2.0 -2.0724530547688857e-05
grad: 2.0 4.0 -8.124015974608767e-05
grad: 3.0 6.0 -0.00016816713067413502
Epoch: 38 w=: 1.999992339052936 cost= 9.804734918933698e-10
grad: 1.0 2.0 -1.5321894128117464e-05
grad: 2.0 4.0 -6.006182498197177e-05
grad: 3.0 6.0 -0.00012432797771566584
Epoch: 39 w=: 1.9999943361699042 cost= 5.359093909486216e-10
grad: 1.0 2.0 -1.1327660191629008e-05
grad: 2.0 4.0 -4.4404427951505454e-05
grad: 3.0 6.0 -9.191716585732479e-05
Epoch: 40 w=: 1.9999958126624442 cost= 2.929185517711759e-10
grad: 1.0 2.0 -8.37467511161094e-06
grad: 2.0 4.0 -3.282872643772805e-05
grad: 3.0 6.0 -6.795546372551087e-05
Epoch: 41 w=: 1.999996904251097 cost= 1.6010407620189493e-10
grad: 1.0 2.0 -6.191497806007362e-06
grad: 2.0 4.0 -2.4270671399762023e-05
grad: 3.0 6.0 -5.0240289795056015e-05
Epoch: 42 w=: 1.999997711275687 cost= 8.751004353779433e-11
grad: 1.0 2.0 -4.5774486259198e-06
grad: 2.0 4.0 -1.794359861406747e-05
grad: 3.0 6.0 -3.714324913239864e-05
Epoch: 43 w=: 1.9999983079186507 cost= 4.7831435036272696e-11
grad: 1.0 2.0 -3.3841626985164908e-06
grad: 2.0 4.0 -1.326591777761621e-05
grad: 3.0 6.0 -2.7460449796734565e-05
Epoch: 44 w=: 1.9999987490239537 cost= 2.614381258124446e-11
grad: 1.0 2.0 -2.5019520926150562e-06
grad: 2.0 4.0 -9.807652203264183e-06
grad: 3.0 6.0 -2.0301840059744336e-05
Epoch: 45 w=: 1.9999990751383971 cost= 1.4289743472838837e-11
grad: 1.0 2.0 -1.8497232057157476e-06
grad: 2.0 4.0 -7.250914967116273e-06
grad: 3.0 6.0 -1.5009393983689279e-05
Epoch: 46 w=: 1.9999993162387186 cost= 7.810519902420936e-12
grad: 1.0 2.0 -1.3675225627451937e-06
grad: 2.0 4.0 -5.3606884460322135e-06
grad: 3.0 6.0 -1.109662508014253e-05
Epoch: 47 w=: 1.9999994944870796 cost= 4.269091410874813e-12
grad: 1.0 2.0 -1.0110258408246864e-06
grad: 2.0 4.0 -3.963221296032771e-06
grad: 3.0 6.0 -8.20386808086937e-06
Epoch: 48 w=: 1.9999996262682318 cost= 2.3334095170724104e-12
grad: 1.0 2.0 -7.474635363990956e-07
grad: 2.0 4.0 -2.930057062755509e-06
grad: 3.0 6.0 -6.065218119744031e-06
Epoch: 49 w=: 1.999999723695619 cost= 1.2754001845445623e-12
grad: 1.0 2.0 -5.526087618612507e-07
grad: 2.0 4.0 -2.166226346744793e-06
grad: 3.0 6.0 -4.484088535150477e-06
Epoch: 50 w=: 1.9999997957248556 cost= 6.971110807809687e-13
grad: 1.0 2.0 -4.08550288710785e-07
grad: 2.0 4.0 -1.6015171322436572e-06
grad: 3.0 6.0 -3.3151404608133817e-06
Epoch: 51 w=: 1.9999998489769344 cost= 3.810285310612767e-13
grad: 1.0 2.0 -3.020461312175371e-07
grad: 2.0 4.0 -1.1840208351543424e-06
grad: 3.0 6.0 -2.4509231284497446e-06
Epoch: 52 w=: 1.9999998883468353 cost= 2.0826342583935095e-13
grad: 1.0 2.0 -2.2330632942768602e-07
grad: 2.0 4.0 -8.753608113920563e-07
grad: 3.0 6.0 -1.811996877876254e-06
Epoch: 53 w=: 1.9999999174534755 cost= 1.1383308862014303e-13
grad: 1.0 2.0 -1.6509304900935717e-07
grad: 2.0 4.0 -6.471647520100987e-07
grad: 3.0 6.0 -1.3396310407642886e-06
Epoch: 54 w=: 1.999999938972364 cost= 6.221914359741133e-14
grad: 1.0 2.0 -1.220552721115098e-07
grad: 2.0 4.0 -4.784566662863199e-07
grad: 3.0 6.0 -9.904052991061008e-07
Epoch: 55 w=: 1.9999999548815364 cost= 3.400787836254813e-14
grad: 1.0 2.0 -9.023692726373156e-08
grad: 2.0 4.0 -3.5372875473171916e-07
grad: 3.0 6.0 -7.322185204827747e-07
Epoch: 56 w=: 1.9999999666433785 cost= 1.8588102038943167e-14
grad: 1.0 2.0 -6.671324292994996e-08
grad: 2.0 4.0 -2.615159129248923e-07
grad: 3.0 6.0 -5.413379398078177e-07
Epoch: 57 w=: 1.9999999753390494 cost= 1.0159926345146978e-14
grad: 1.0 2.0 -4.932190122985958e-08
grad: 2.0 4.0 -1.9334185274999527e-07
grad: 3.0 6.0 -4.002176350326181e-07
Epoch: 58 w=: 1.9999999817678633 cost= 5.553235233228262e-15
grad: 1.0 2.0 -3.6464273378555845e-08
grad: 2.0 4.0 -1.429399514307761e-07
grad: 3.0 6.0 -2.9588569994132286e-07
Epoch: 59 w=: 1.9999999865207625 cost= 3.0352997458740945e-15
grad: 1.0 2.0 -2.6958475007887728e-08
grad: 2.0 4.0 -1.0567722164012139e-07
grad: 3.0 6.0 -2.1875184863517916e-07
Epoch: 60 w=: 1.999999990034638 cost= 1.6590409281392764e-15
grad: 1.0 2.0 -1.993072418216002e-08
grad: 2.0 4.0 -7.812843882959442e-08
grad: 3.0 6.0 -1.617258700292723e-07
Epoch: 61 w=: 1.9999999926324883 cost= 9.068022795449514e-16
grad: 1.0 2.0 -1.473502342363986e-08
grad: 2.0 4.0 -5.7761292637792394e-08
grad: 3.0 6.0 -1.195658771990793e-07
Epoch: 62 w=: 1.99999999455311 cost= 4.956420488952487e-16
grad: 1.0 2.0 -1.0893780100218464e-08
grad: 2.0 4.0 -4.270361841918202e-08
grad: 3.0 6.0 -8.839649012770678e-08
Epoch: 63 w=: 1.9999999959730488 cost= 2.7090914819461653e-16
grad: 1.0 2.0 -8.05390243385773e-09
grad: 2.0 4.0 -3.1571296688071016e-08
grad: 3.0 6.0 -6.53525820126788e-08
Epoch: 64 w=: 1.9999999970228268 cost= 1.480741124443087e-16
grad: 1.0 2.0 -5.9543463493128e-09
grad: 2.0 4.0 -2.334103754719763e-08
grad: 3.0 6.0 -4.8315948575350376e-08
Epoch: 65 w=: 1.9999999977989402 cost= 8.093467319454633e-17
grad: 1.0 2.0 -4.402119557767037e-09
grad: 2.0 4.0 -1.725630838222969e-08
grad: 3.0 6.0 -3.5720557178819945e-08
Epoch: 66 w=: 1.9999999983727301 cost= 4.4237452103093086e-17
grad: 1.0 2.0 -3.254539748809293e-09
grad: 2.0 4.0 -1.2757796596929438e-08
grad: 3.0 6.0 -2.6408640607655798e-08
Epoch: 67 w=: 1.9999999987969397 cost= 2.417940731628089e-17
grad: 1.0 2.0 -2.406120636067044e-09
grad: 2.0 4.0 -9.431992964437086e-09
grad: 3.0 6.0 -1.9524227568012975e-08
Epoch: 68 w=: 1.999999999110563 cost= 1.321603818914294e-17
grad: 1.0 2.0 -1.7788739370416806e-09
grad: 2.0 4.0 -6.97318647269185e-09
grad: 3.0 6.0 -1.4434496264925656e-08
Epoch: 69 w=: 1.9999999993424284 cost= 7.223653526452133e-18
grad: 1.0 2.0 -1.3151431055291596e-09
grad: 2.0 4.0 -5.155360582875801e-09
grad: 3.0 6.0 -1.067159693945996e-08
Epoch: 70 w=: 1.9999999995138495 cost= 3.9483193314682906e-18
grad: 1.0 2.0 -9.72300906454393e-10
grad: 2.0 4.0 -3.811418736177075e-09
grad: 3.0 6.0 -7.88963561149103e-09
Epoch: 71 w=: 1.9999999996405833 cost= 2.1580806069463956e-18
grad: 1.0 2.0 -7.18833437218791e-10
grad: 2.0 4.0 -2.8178277489132597e-09
grad: 3.0 6.0 -5.832902161273523e-09
Epoch: 72 w=: 1.999999999734279 cost= 1.1795680215816471e-18
grad: 1.0 2.0 -5.314420015167798e-10
grad: 2.0 4.0 -2.0832526814729135e-09
grad: 3.0 6.0 -4.31233715403323e-09
Epoch: 73 w=: 1.9999999998035491 cost= 6.4473110851989965e-19
grad: 1.0 2.0 -3.92901711165905e-10
grad: 2.0 4.0 -1.5401742103904326e-09
grad: 3.0 6.0 -3.188159070077745e-09
Epoch: 74 w=: 1.9999999998547615 cost= 3.5239871381328163e-19
grad: 1.0 2.0 -2.9047697580608656e-10
grad: 2.0 4.0 -1.1386696030513122e-09
grad: 3.0 6.0 -2.3570478902001923e-09
Epoch: 75 w=: 1.9999999998926234 cost= 1.9261504048240074e-19
grad: 1.0 2.0 -2.1475310418850313e-10
grad: 2.0 4.0 -8.418314934033333e-10
grad: 3.0 6.0 -1.7425900722400911e-09
Epoch: 76 w=: 1.9999999999206153 cost= 1.0527977803310672e-19
grad: 1.0 2.0 -1.5876944203796484e-10
grad: 2.0 4.0 -6.223768167501476e-10
grad: 3.0 6.0 -1.2883241140571045e-09
Epoch: 77 w=: 1.9999999999413098 cost= 5.754429955693564e-20
grad: 1.0 2.0 -1.17380327679939e-10
grad: 2.0 4.0 -4.601314884666863e-10
grad: 3.0 6.0 -9.524754318590567e-10
Epoch: 78 w=: 1.9999999999566096 cost= 3.1452826708032987e-20
grad: 1.0 2.0 -8.678080476443029e-11
grad: 2.0 4.0 -3.4018121652934497e-10
grad: 3.0 6.0 -7.041780492045291e-10
Epoch: 79 w=: 1.9999999999679208 cost= 1.7191656109647926e-20
grad: 1.0 2.0 -6.415845632545825e-11
grad: 2.0 4.0 -2.5150193039280566e-10
grad: 3.0 6.0 -5.206075570640678e-10
Epoch: 80 w=: 1.9999999999762834 cost= 9.396758983838199e-21
grad: 1.0 2.0 -4.743316850408519e-11
grad: 2.0 4.0 -1.8593837580738182e-10
grad: 3.0 6.0 -3.8489211817704927e-10
Epoch: 81 w=: 1.999999999982466 cost= 5.136032805157672e-21
grad: 1.0 2.0 -3.5067948545020045e-11
grad: 2.0 4.0 -1.3746692673066718e-10
grad: 3.0 6.0 -2.845563784603655e-10
Epoch: 82 w=: 1.9999999999870368 cost= 2.8073414984553174e-21
grad: 1.0 2.0 -2.5926372160256506e-11
grad: 2.0 4.0 -1.0163070385260653e-10
grad: 3.0 6.0 -2.1037571684701106e-10
Epoch: 83 w=: 1.999999999990416 cost= 1.5344657811957726e-21
grad: 1.0 2.0 -1.9167778475548403e-11
grad: 2.0 4.0 -7.51381179497912e-11
grad: 3.0 6.0 -1.5553425214420713e-10
Epoch: 84 w=: 1.9999999999929146 cost= 8.386855712615821e-22
grad: 1.0 2.0 -1.4170886686315498e-11
grad: 2.0 4.0 -5.555023108172463e-11
grad: 3.0 6.0 -1.1499068364173581e-10
Epoch: 85 w=: 1.9999999999947617 cost= 4.584004440146043e-22
grad: 1.0 2.0 -1.0476508549572827e-11
grad: 2.0 4.0 -4.106759377009439e-11
grad: 3.0 6.0 -8.500933290633839e-11
Epoch: 86 w=: 1.9999999999961273 cost= 2.5055063379082294e-22
grad: 1.0 2.0 -7.745359908994942e-12
grad: 2.0 4.0 -3.036149109902908e-11
grad: 3.0 6.0 -6.285105769165966e-11
Epoch: 87 w=: 1.999999999997137 cost= 1.3693547355931303e-22
grad: 1.0 2.0 -5.726086271806707e-12
grad: 2.0 4.0 -2.2446045022661565e-11
grad: 3.0 6.0 -4.646416584819235e-11
Epoch: 88 w=: 1.9999999999978835 cost= 7.484131529060059e-23
grad: 1.0 2.0 -4.233058348290797e-12
grad: 2.0 4.0 -1.659294923683774e-11
grad: 3.0 6.0 -3.4351188560322043e-11
Epoch: 89 w=: 1.9999999999984353 cost= 4.090151225674099e-23
grad: 1.0 2.0 -3.1294966618133913e-12
grad: 2.0 4.0 -1.226752033289813e-11
grad: 3.0 6.0 -2.539835008974478e-11
Epoch: 90 w=: 1.9999999999988431 cost= 2.2361520788848633e-23
grad: 1.0 2.0 -2.3137047833188262e-12
grad: 2.0 4.0 -9.070078021977679e-12
grad: 3.0 6.0 -1.8779644506139448e-11
Epoch: 91 w=: 1.9999999999991447 cost= 1.2222275007963959e-23
grad: 1.0 2.0 -1.7106316363424412e-12
grad: 2.0 4.0 -6.7057470687359455e-12
grad: 3.0 6.0 -1.3882228699912957e-11
Epoch: 92 w=: 1.9999999999993676 cost= 6.680541397586452e-24
grad: 1.0 2.0 -1.2647660696529783e-12
grad: 2.0 4.0 -4.957811938766099e-12
grad: 3.0 6.0 -1.0263789818054647e-11
Epoch: 93 w=: 1.9999999999995324 cost= 3.6539335536669686e-24
grad: 1.0 2.0 -9.352518759442319e-13
grad: 2.0 4.0 -3.666400516522117e-12
grad: 3.0 6.0 -7.58859641791787e-12
Epoch: 94 w=: 1.9999999999996543 cost= 1.997419675061985e-24
grad: 1.0 2.0 -6.914468997365475e-13
grad: 2.0 4.0 -2.7107205369247822e-12
grad: 3.0 6.0 -5.611511255665391e-12
Epoch: 95 w=: 1.9999999999997444 cost= 1.091085548139986e-24
grad: 1.0 2.0 -5.111466805374221e-13
grad: 2.0 4.0 -2.0037305148434825e-12
grad: 3.0 6.0 -4.1460168631601846e-12
Epoch: 96 w=: 1.999999999999811 cost= 5.963228352228142e-25
grad: 1.0 2.0 -3.779199175824033e-13
grad: 2.0 4.0 -1.4814816040598089e-12
grad: 3.0 6.0 -3.064215547965432e-12
Epoch: 97 w=: 1.9999999999998603 cost= 3.26058694663643e-25
grad: 1.0 2.0 -2.793321129956894e-13
grad: 2.0 4.0 -1.0942358130705543e-12
grad: 3.0 6.0 -2.2648549702353193e-12
Epoch: 98 w=: 1.9999999999998967 cost= 1.7819519823469544e-25
grad: 1.0 2.0 -2.0650148258027912e-13
grad: 2.0 4.0 -8.100187187665142e-13
grad: 3.0 6.0 -1.6786572132332367e-12
Epoch: 99 w=: 1.9999999999999236 cost= 9.755053953963032e-26
Predict (after training) 4 7.9999999999996945
注:随机梯度下降算法最终结果更加精确,因为虽然Epoch相同,但经历了更多次更新

反向传播

课程

代码

import torch
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#令y=2x+1
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]
w=torch.Tensor([1.0])
w.requires_grad=True
#结果为Tensor类型
def forward(x):
    return x*w
#构建计算图
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)**2
print("Predict (before training)",4,forward(4).item())
for epoch in range(100):
    for x,y in zip(x_data,y_data):
        #前向传播求损失
        loss_v=loss(x,y)
        #反向传播求梯度
        loss_v.backward()
        print("\tgrad:",x,y,w.grad.item())
        #更新参数
        w.data=w.data-0.01*w.grad.data
        #清空梯度,否则会累加
        w.grad.data.zero_()
    print("progress:",epoch,loss_v.item())
print("Predict (after training)",4,forward(4).item())

结果

Predict (before training) 4 4.0
grad: 1.0 2.0 -2.0
grad: 2.0 4.0 -7.840000152587891
grad: 3.0 6.0 -16.228801727294922
progress: 0 7.315943717956543
grad: 1.0 2.0 -1.478623867034912
grad: 2.0 4.0 -5.796205520629883
grad: 3.0 6.0 -11.998146057128906
progress: 1 3.9987640380859375
grad: 1.0 2.0 -1.0931644439697266
grad: 2.0 4.0 -4.285204887390137
grad: 3.0 6.0 -8.870372772216797
progress: 2 2.1856532096862793
grad: 1.0 2.0 -0.8081896305084229
grad: 2.0 4.0 -3.1681032180786133
grad: 3.0 6.0 -6.557973861694336
progress: 3 1.1946394443511963
grad: 1.0 2.0 -0.5975041389465332
grad: 2.0 4.0 -2.3422164916992188
grad: 3.0 6.0 -4.848389625549316
progress: 4 0.6529689431190491
grad: 1.0 2.0 -0.4417421817779541
grad: 2.0 4.0 -1.7316293716430664
grad: 3.0 6.0 -3.58447265625
progress: 5 0.35690122842788696
grad: 1.0 2.0 -0.3265852928161621
grad: 2.0 4.0 -1.2802143096923828
grad: 3.0 6.0 -2.650045394897461
progress: 6 0.195076122879982
grad: 1.0 2.0 -0.24144840240478516
grad: 2.0 4.0 -0.9464778900146484
grad: 3.0 6.0 -1.9592113494873047
progress: 7 0.10662525147199631
grad: 1.0 2.0 -0.17850565910339355
grad: 2.0 4.0 -0.699742317199707
grad: 3.0 6.0 -1.4484672546386719
progress: 8 0.0582793727517128
grad: 1.0 2.0 -0.1319713592529297
grad: 2.0 4.0 -0.5173273086547852
grad: 3.0 6.0 -1.070866584777832
progress: 9 0.03185431286692619
grad: 1.0 2.0 -0.09756779670715332
grad: 2.0 4.0 -0.3824653625488281
grad: 3.0 6.0 -0.7917022705078125
progress: 10 0.017410902306437492
grad: 1.0 2.0 -0.07213282585144043
grad: 2.0 4.0 -0.2827606201171875
grad: 3.0 6.0 -0.5853137969970703
progress: 11 0.009516451507806778
grad: 1.0 2.0 -0.053328514099121094
grad: 2.0 4.0 -0.2090473175048828
grad: 3.0 6.0 -0.43272972106933594
progress: 12 0.005201528314501047
grad: 1.0 2.0 -0.039426326751708984
grad: 2.0 4.0 -0.15455150604248047
grad: 3.0 6.0 -0.3199195861816406
progress: 13 0.0028430151287466288
grad: 1.0 2.0 -0.029148340225219727
grad: 2.0 4.0 -0.11426162719726562
grad: 3.0 6.0 -0.23652076721191406
progress: 14 0.0015539465239271522
grad: 1.0 2.0 -0.021549701690673828
grad: 2.0 4.0 -0.08447456359863281
grad: 3.0 6.0 -0.17486286163330078
progress: 15 0.0008493617060594261
grad: 1.0 2.0 -0.01593184471130371
grad: 2.0 4.0 -0.062453269958496094
grad: 3.0 6.0 -0.12927818298339844
progress: 16 0.00046424579340964556
grad: 1.0 2.0 -0.011778593063354492
grad: 2.0 4.0 -0.046172142028808594
grad: 3.0 6.0 -0.09557533264160156
progress: 17 0.0002537401160225272
grad: 1.0 2.0 -0.00870823860168457
grad: 2.0 4.0 -0.03413581848144531
grad: 3.0 6.0 -0.07066154479980469
progress: 18 0.00013869594840798527
grad: 1.0 2.0 -0.006437778472900391
grad: 2.0 4.0 -0.025236129760742188
grad: 3.0 6.0 -0.052239418029785156
progress: 19 7.580435340059921e-05
grad: 1.0 2.0 -0.004759550094604492
grad: 2.0 4.0 -0.018657684326171875
grad: 3.0 6.0 -0.038620948791503906
progress: 20 4.143271507928148e-05
grad: 1.0 2.0 -0.003518819808959961
grad: 2.0 4.0 -0.0137939453125
grad: 3.0 6.0 -0.028553009033203125
progress: 21 2.264650902361609e-05
grad: 1.0 2.0 -0.00260162353515625
grad: 2.0 4.0 -0.010198593139648438
grad: 3.0 6.0 -0.021108627319335938
progress: 22 1.2377059647405986e-05
grad: 1.0 2.0 -0.0019233226776123047
grad: 2.0 4.0 -0.0075397491455078125
grad: 3.0 6.0 -0.0156097412109375
progress: 23 6.768445018678904e-06
grad: 1.0 2.0 -0.0014221668243408203
grad: 2.0 4.0 -0.0055751800537109375
grad: 3.0 6.0 -0.011541366577148438
progress: 24 3.7000872907810844e-06
grad: 1.0 2.0 -0.0010514259338378906
grad: 2.0 4.0 -0.0041217803955078125
grad: 3.0 6.0 -0.008531570434570312
progress: 25 2.021880391112063e-06
grad: 1.0 2.0 -0.0007772445678710938
grad: 2.0 4.0 -0.0030469894409179688
grad: 3.0 6.0 -0.006305694580078125
progress: 26 1.1044940038118511e-06
grad: 1.0 2.0 -0.0005745887756347656
grad: 2.0 4.0 -0.0022525787353515625
grad: 3.0 6.0 -0.0046634674072265625
progress: 27 6.041091182851233e-07
grad: 1.0 2.0 -0.0004248619079589844
grad: 2.0 4.0 -0.0016651153564453125
grad: 3.0 6.0 -0.003444671630859375
progress: 28 3.296045179013163e-07
grad: 1.0 2.0 -0.0003139972686767578
grad: 2.0 4.0 -0.0012311935424804688
grad: 3.0 6.0 -0.0025491714477539062
progress: 29 1.805076408345485e-07
grad: 1.0 2.0 -0.00023221969604492188
grad: 2.0 4.0 -0.0009107589721679688
grad: 3.0 6.0 -0.0018854141235351562
progress: 30 9.874406714516226e-08
grad: 1.0 2.0 -0.00017189979553222656
grad: 2.0 4.0 -0.0006742477416992188
grad: 3.0 6.0 -0.00139617919921875
progress: 31 5.4147676564753056e-08
grad: 1.0 2.0 -0.0001270771026611328
grad: 2.0 4.0 -0.0004978179931640625
grad: 3.0 6.0 -0.00102996826171875
progress: 32 2.9467628337442875e-08
grad: 1.0 2.0 -9.393692016601562e-05
grad: 2.0 4.0 -0.0003681182861328125
grad: 3.0 6.0 -0.0007610321044921875
progress: 33 1.6088051779661328e-08
grad: 1.0 2.0 -6.937980651855469e-05
grad: 2.0 4.0 -0.00027179718017578125
grad: 3.0 6.0 -0.000560760498046875
progress: 34 8.734787115827203e-09
grad: 1.0 2.0 -5.125999450683594e-05
grad: 2.0 4.0 -0.00020122528076171875
grad: 3.0 6.0 -0.0004177093505859375
progress: 35 4.8466972657479346e-09
grad: 1.0 2.0 -3.790855407714844e-05
grad: 2.0 4.0 -0.000148773193359375
grad: 3.0 6.0 -0.000308990478515625
progress: 36 2.6520865503698587e-09
grad: 1.0 2.0 -2.8133392333984375e-05
grad: 2.0 4.0 -0.000110626220703125
grad: 3.0 6.0 -0.0002288818359375
progress: 37 1.4551915228366852e-09
grad: 1.0 2.0 -2.09808349609375e-05
grad: 2.0 4.0 -8.20159912109375e-05
grad: 3.0 6.0 -0.00016880035400390625
progress: 38 7.914877642178908e-10
grad: 1.0 2.0 -1.5497207641601562e-05
grad: 2.0 4.0 -6.103515625e-05
grad: 3.0 6.0 -0.000125885009765625
progress: 39 4.4019543565809727e-10
grad: 1.0 2.0 -1.1444091796875e-05
grad: 2.0 4.0 -4.482269287109375e-05
grad: 3.0 6.0 -9.1552734375e-05
progress: 40 2.3283064365386963e-10
grad: 1.0 2.0 -8.344650268554688e-06
grad: 2.0 4.0 -3.24249267578125e-05
grad: 3.0 6.0 -6.580352783203125e-05
progress: 41 1.2028067430946976e-10
grad: 1.0 2.0 -5.9604644775390625e-06
grad: 2.0 4.0 -2.288818359375e-05
grad: 3.0 6.0 -4.57763671875e-05
progress: 42 5.820766091346741e-11
grad: 1.0 2.0 -4.291534423828125e-06
grad: 2.0 4.0 -1.71661376953125e-05
grad: 3.0 6.0 -3.719329833984375e-05
progress: 43 3.842615114990622e-11
grad: 1.0 2.0 -3.337860107421875e-06
grad: 2.0 4.0 -1.33514404296875e-05
grad: 3.0 6.0 -2.86102294921875e-05
progress: 44 2.2737367544323206e-11
grad: 1.0 2.0 -2.6226043701171875e-06
grad: 2.0 4.0 -1.049041748046875e-05
grad: 3.0 6.0 -2.288818359375e-05
progress: 45 1.4551915228366852e-11
grad: 1.0 2.0 -1.9073486328125e-06
grad: 2.0 4.0 -7.62939453125e-06
grad: 3.0 6.0 -1.430511474609375e-05
progress: 46 5.6843418860808015e-12
grad: 1.0 2.0 -1.430511474609375e-06
grad: 2.0 4.0 -5.7220458984375e-06
grad: 3.0 6.0 -1.1444091796875e-05
progress: 47 3.637978807091713e-12
grad: 1.0 2.0 -1.1920928955078125e-06
grad: 2.0 4.0 -4.76837158203125e-06
grad: 3.0 6.0 -1.1444091796875e-05
progress: 48 3.637978807091713e-12
grad: 1.0 2.0 -9.5367431640625e-07
grad: 2.0 4.0 -3.814697265625e-06
grad: 3.0 6.0 -8.58306884765625e-06
progress: 49 2.0463630789890885e-12
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 50 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 51 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 52 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 53 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 54 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 55 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 56 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 57 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 58 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 59 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 60 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 61 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 62 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 63 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 64 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 65 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 66 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 67 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 68 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 69 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 70 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 71 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 72 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 73 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 74 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 75 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 76 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 77 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 78 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 79 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 80 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 81 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 82 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 83 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 84 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 85 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 86 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 87 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 88 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 89 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 90 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 91 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 92 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 93 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 94 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 95 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 96 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 97 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 98 9.094947017729282e-13
grad: 1.0 2.0 -7.152557373046875e-07
grad: 2.0 4.0 -2.86102294921875e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 99 9.094947017729282e-13
Predict (after training) 4 7.999998569488525

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1096088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2.Javaweb模块基本

1.1web基本 session 和 cookie 有什么区别? 存储位置不同:session 存储在服务器端;cookie 存储在浏览器端。 安全性不同:cookie 安全性一般,在浏览器存储,可以被伪造和修改。 容量和个数限制:…

浅讲make/makefile【linux】

浅讲make/makefile【linux】 一. 什么是make/makefile?二. makefile2.1 依赖关系与依赖方法2.2 浅用make2.2.1 make test2.2.2 clean 2.2 make一次执行多步2.3 部分修饰符号2.3.1 .PHONY(伪目标)2.3.2 2.3.3 $ $^ 一. 什么是make/makefile? make/makefi…

uml知识点学习

https://zhuanlan.zhihu.com/p/659911315https://zhuanlan.zhihu.com/p/659911315软件工程分析设计图库目录 - 知乎一、结构化绘图1. 结构化——数据流图Chilan Yuk:1. 结构化——数据流图2. 结构化——数据字典Chilan Yuk:2. 结构化——数据字典3. 结构…

“理解梯度下降:直觉、数学公式和推导”

一、说明 梯度下降是机器学习中使用的一种流行的优化算法,通过迭代调整函数的参数来最小化函数。基本思想是将函数的参数沿函数梯度最陡峭下降的方向移动。 二、关于梯度的叙述 简单来说,想象一下你在山顶,你想尽快到达山脚下。你可以开始下坡…

流程图规范

文章目录 1.符号概览2.要求2.1 从上至下,从左至右的流向顺序2.2 开始符号只能有一个出口2.3 进程符号不做逻辑校验2.4 相同流程图,符号大小应为一致2.5 引用流程,而不是重复绘制2.6 路径符号应尽量避免相互交叉2.7 同一路径,箭头只…

【Python】Python语言基础(下)

目录 第十一章 控制结构 for语句 if语句 while语句 第十二章 函数 函数介绍 函数的定义 函数的调用 函数的传参 函数的传参方式 位置实参 关键字实参 默认值实参 函数的返回值 函数传递未知数量的实参 函数的模块调用 调用整个模块 调用模块中特定功能 第十…

业财融合潮流下,构建国有企业全面预算管理体系

近年来,在我国快速发展的变革过程中,国有企业改革的持续深入需要积极结合市场环境和自身发展需求,然而其传统的财务管理模式难以适应企业提出的新要求,预算管理与经营销售之间不断出现隔阂。为确保全面预算管理在国有企业内部的良…

部署个人静态网站到阿里云服务器(含域名解析)

使用前提: 您目前已经有一个静态网站,可以在本地通过html进行访问。 1、购买阿里云服务器 该步骤最详细的教程来自官方文档 具体到从注册开始每一个鼠标点击都有图片介绍。 你可以按照他的步骤完成整个部署过程,当然可以自己选择服务器的…

【实用调试技巧】总是找不到Bug?手把手教你在vs2022中调试程序

🦄个人主页:修修修也 🎏所属专栏:程序调试及报错解决 ⚙️操作环境:Visual Studio 2022 目录 什么是Bug? 1947年9月9日:第一个"Bug"被发现 什么是调试? 调试是什么? 调试的基本步骤 Debug和Relese的区别 1.调试的区别 2.文件大小的…

13 | 如何正确使用 @Entity 里面的回调方法

Java Persistence API 里面规定的回调方法有哪些? JPA 协议里面规定,可以通过一些注解,为其监听回调事件、指定回调方法。下面我整理了一个回调事件注解表,分别列举了 PrePersist、PostPersist、PreRemove、PostRemove、PreUpdat…

线性排序:如何根据年龄给100万用户数据排序?

文章来源于极客时间前google工程师−王争专栏。 桶排序、计数排序、基数排序时间复杂度是O(n),所以这类排序算法叫作线性排序。 线性的原因:三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。 三种排序对排序的数据要求苛刻&am…

19 | 如何搞清楚事务、连接池的关系?正确配置是怎样的

事务的基本原理 在学习 Spring 的事务之前,你首先要了解数据库的事务原理,我们以 MySQL 5.7 为例,讲解一下数据库事务的基础知识。 我们都知道 当 MySQL 使用 InnoDB 数据库引擎的时候,数据库是对事务有支持的。而事务最主要的作…

(转)富文本编辑器——Vue2Editor

介绍 Vue2Editor是一个简单易用且功能强大的Vue版本的富文本编辑器,其基于Quill.js和Vuejs构建! 简单易用、功能强大的富文本编辑器——Vue2Editor Github https://github.com/davidroyer/vue2-editor 特性 简单易用;基于Vue.js & Quil…

【Golang】Go的并发和并行性解释。谁说Go不是并行语言?

偶然发现百度上有很多"师出同门"的"go是并发语言,而不是并行语言"的说法。让我顿感奇怪,"并行"说白了就是对CPU多核的利用,这年头不能利用多核的编译语言还有的混?而且还混的这么好?并且…

Linux网络编程系列之服务器编程——非阻塞IO模型

Linux网络编程系列 (够吃,管饱) 1、Linux网络编程系列之网络编程基础 2、Linux网络编程系列之TCP协议编程 3、Linux网络编程系列之UDP协议编程 4、Linux网络编程系列之UDP广播 5、Linux网络编程系列之UDP组播 6、Linux网络编程系列之服务器编…

echarts关于一次性绘制多个饼图 (基于vue3)

在echarts中,dataset 和 source 是用来配置数据的选项。 dataset 是一个包含数据相关配置的对象,用于指定数据的来源和格式。它可以包含多个维度的数据集,每个维度都可以有自己的名称和数据。 source 是 dataset 中的一个子项,用于…

图计算(林子雨慕课课程)

文章目录 13. 图计算13.1 图计算简介13.2 Pregel简介13.3 Pregel图计算模型13.3.1 有向图和顶点13.3.2 Pregel的计算过程13.3.2 Pregel实例 13.4 Pregel的C API13.4.1 定义Vertex基类13.4.2 消息传递机制和Combiner13.4.3 Aggregator、拓扑改变和输入输出 13.5 Pregel的体系结构…

【通过实验带你认识linux下的源码编译】

通过实验带你认识linux下的源码编译 01 初识项目编译02 编译过程03 完整的编译过程1、创建源代码文件2、创建configure脚本3、创建Makefile.am 源代码是相对目标代码和可执行代码而言的。源代码是用汇编语言和高级语言写出来的代码。 目标代码是指源代码经过编译程序产生的能被…

qml介绍

文章目录 qml简介对象一个风车的例子 qml简介 从 Qt 4.7 开始,Qt 引入了一种声明式脚本语言,称为 QML(Qt Meta Language 或者 Qt Modeling Language),作为 C 语言的一种替代。而 Qt Quick 就是使用 QML 构建的一套类库…

(latex中appendix附录怎么写)以及(附录里面的图片表格之类的如何重新编号)

文章目录 初级:怎么写进阶:怎么重新编号进阶:怎么换成单栏格式 初级:怎么写 这个很简单,我一开始以为很复杂。 \begin{document} #这里是“正文”。 #这里是“引用”。 #下面开始是附录。 \appendix \section{Proofs…