单机环境下可以利用jvm级别的锁,比如synchronized、Lock等来实现锁,如果是多机部署就需要一个共享数据存储区域来实现分布式锁
一、分布式锁实现方式
1、基于数据库实现分布式锁
可以用数据库唯一索引来实现
2、基于redis实现分布式锁
redis实现的分布式锁始终会有一些问题,即便使用多数写入,主节点挂了,数据丢失还是会存在加锁问题,就是主节点宕机,客户端无法感知
3、基于zookeeper实现分布式锁
1)实现方式一
使用临时节点创建成功获取锁,否则监听临时节点,有个问题,比如1000个线程只有一个会加锁成功,当删除临时节点时999个线程都会去竞争
2)实现方式二
公平锁的实现
4、Curator可重入分布式锁工作流程
从InterProcessMutex类找到acquire()加锁方法
public void acquire() throws Exception {
if (!this.internalLock(-1L, (TimeUnit)null)) {
throw new IOException("Lost connection while trying to acquire lock: " + this.basePath);
}
}
1)加锁
private boolean internalLock(long time, TimeUnit unit) throws Exception {
// 获取当前线程
Thread currentThread = Thread.currentThread();
// threadData类型是ConcurrentMap,从threadData中去拿LockData加锁对象
InterProcessMutex.LockData lockData = (InterProcessMutex.LockData)this.threadData.get(currentThread);
// 如果拿到了 证明之前加锁了,lockCount重入次数+1
if (lockData != null) {
lockData.lockCount.incrementAndGet();
return true;
} else {
// 没有拿到开始从zookeeper上创建lock节点
String lockPath = this.internals.attemptLock(time, unit, this.getLockNodeBytes());
// 创建成功 加锁成功把对象放到threadData中
if (lockPath != null) {
InterProcessMutex.LockData newLockData = new InterProcessMutex.LockData(currentThread, lockPath);
this.threadData.put(currentThread, newLockData);
return true;
} else {
// 加锁失败
return false;
}
}
}
private static class LockData {
// 持有锁的线程
final Thread owningThread;
// 在zookeeper的锁路径
final String lockPath;
// 线程加锁次数
final AtomicInteger lockCount;
private LockData(Thread owningThread, String lockPath) {
this.lockCount = new AtomicInteger(1);
this.owningThread = owningThread;
this.lockPath = lockPath;
}
}
2)创建节点返回路径
String attemptLock(long time, TimeUnit unit, byte[] lockNodeBytes) throws Exception {
long startMillis = System.currentTimeMillis();
Long millisToWait = unit != null ? unit.toMillis(time) : null;
byte[] localLockNodeBytes = this.revocable.get() != null ? new byte[0] : lockNodeBytes;
// 重试次数
int retryCount = 0;
String ourPath = null;
boolean hasTheLock = false;
boolean isDone = false;
while(!isDone) {
isDone = true;
try {
// 创建临时有序节点
ourPath = this.driver.createsTheLock(this.client, this.path, localLockNodeBytes);
// 创建的节点是否为最小节点
hasTheLock = this.internalLockLoop(startMillis, millisToWait, ourPath);
} catch (NoNodeException var14) {
// 加锁失败 重试设置重试策略
if (!this.client.getZookeeperClient().getRetryPolicy().allowRetry(retryCount++, System.currentTimeMillis() - startMillis, RetryLoop.getDefaultRetrySleeper())) {
throw var14;
}
isDone = false;
}
}
return hasTheLock ? ourPath : null;
}
public String createsTheLock(CuratorFramework client, String path, byte[] lockNodeBytes) throws Exception {
String ourPath;
// 是否要给节点设置属性 创建的都是临时有序节点
if (lockNodeBytes != null) {
ourPath = (String)((ACLBackgroundPathAndBytesable)client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL)).forPath(path, lockNodeBytes);
} else {
ourPath = (String)((ACLBackgroundPathAndBytesable)client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL)).forPath(path);
}
return ourPath;
}
private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception {
boolean haveTheLock = false;
boolean doDelete = false;
try {
if (this.revocable.get() != null) {
((BackgroundPathable)this.client.getData().usingWatcher(this.revocableWatcher)).forPath(ourPath);
}
while(this.client.getState() == CuratorFrameworkState.STARTED && !haveTheLock) {
// 将子节点进行排序
List<String> children = this.getSortedChildren();
// 截取创建的节点的序号
String sequenceNodeName = ourPath.substring(this.basePath.length() + 1);
// 判断是否为最小序号
PredicateResults predicateResults = this.driver.getsTheLock(this.client, children, sequenceNodeName, this.maxLeases);
if (predicateResults.getsTheLock()) {
// 加锁成功
haveTheLock = true;
} else {
// 拿到上一个节点的路径
String previousSequencePath = this.basePath + "/" + predicateResults.getPathToWatch();
synchronized(this) {
try {
// 监听上一个节点
((BackgroundPathable)this.client.getData().usingWatcher(this.watcher)).forPath(previousSequencePath);
if (millisToWait == null) {
// 等待
this.wait();
} else {
millisToWait = millisToWait - (System.currentTimeMillis() - startMillis);
startMillis = System.currentTimeMillis();
if (millisToWait > 0L) {
// 超时等待
this.wait(millisToWait);
} else {
doDelete = true;
break;
}
}
} catch (NoNodeException var19) {
}
}
}
}
} catch (Exception var21) {
ThreadUtils.checkInterrupted(var21);
doDelete = true;
throw var21;
} finally {
if (doDelete) {
this.deleteOurPath(ourPath);
}
}
return haveTheLock;
}
3)解锁
public void release() throws Exception {
Thread currentThread = Thread.currentThread();
InterProcessMutex.LockData lockData = (InterProcessMutex.LockData)this.threadData.get(currentThread);
if (lockData == null) {
// 分布式场景下什么情况都可能有 所以判断一下
throw new IllegalMonitorStateException("You do not own the lock: " + this.basePath);
} else {
// 重入次数减1
int newLockCount = lockData.lockCount.decrementAndGet();
if (newLockCount <= 0) {
if (newLockCount < 0) {
throw new IllegalMonitorStateException("Lock count has gone negative for lock: " + this.basePath);
} else {
try {
// 这里之前应该还有个大于0的判断 在curator5.1.0&zookeeper 3.9.0版本去掉了
this.internals.releaseLock(lockData.lockPath);
} finally {
this.threadData.remove(currentThread);
}
}
}
}
}
5、总结
优点:Zookeeper分布式锁(如InterProcessMutex),具备高可用、可重入、阻塞锁特性,可解决失效死锁问题
缺点:因为需要频繁的创建和删除节点,性能上不如redis
在高性能、高并发场景下,不建议用Zookeeper的分布式锁。而由于Zookeeper的高可靠性,因此在并发量不是太高的应用场景下,还是推荐使用Zookeeper的分布式锁
二、服务注册与发现
1、设计思路
2、实现注册中心的优缺点
优点:
- 高可用性:ZooKeeper是一个高可用的分布式系统,可以通过配置多个服务器实例来提供容错能力。如果其中一个实例出现故障,其他实例仍然可以继续提供服务。
- 强一致性:ZooKeeper保证了数据的强一致性。当一个更新操作完成时,所有的服务器都将具有相同的数据视图。这使得ZooKeeper非常适合作为服务注册中心,因为可以确保所有客户端看到的服务状态是一致的。
- 实时性:ZooKeeper的监视器(Watcher)机制允许客户端监听节点的变化。当服务提供者的状态发生变化时(例如,上线或下线),客户端会实时收到通知。这使得服务消费者能够快速响应服务的变化,从而实现动态服务发现。
缺点:
- 性能限制:ZooKeeper的性能可能不如一些专为服务注册中心设计的解决方案,如nacos或Consul。尤其是在大量的读写操作或大规模集群的情况下,ZooKeeper可能会遇到性能瓶颈。
3、整合Spring Cloud Zookeeper实现微服务注册中心
Spring Cloud Zookeeper
第一步:在父pom文件中指定Spring Cloud版本
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.3.2.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<properties>
<java.version>1.8</java.version>
<spring-cloud.version>Hoxton.SR8</spring-cloud.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
注意: springboot和springcloud的版本兼容问题
第二步:微服务pom文件中引入Spring Cloud Zookeeper注册中心依赖
<!-- zookeeper服务注册与发现 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zookeeper-discovery</artifactId>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- zookeeper client -->
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.8.0</version>
</dependency>
注意: zookeeper客户端依赖和zookeeper sever的版本兼容问题
Spring Cloud整合Zookeeper注册中心核心源码入口: ZookeeperDiscoveryClientConfiguration
第三步: 微服务配置文件application.yml中配置zookeeper注册中心地址
spring:
cloud:
zookeeper:
connect-string: localhost:2181
discovery:
instance-host: 127.0.0.1
注册到zookeeper的服务实例元数据信息如下:
注意:如果address有问题,会出现找不到服务的情况,可以通过instance-host配置指定
第四步:整合feign进行服务调用
@RequestMapping(value = "/findOrderByUserId/{id}")
public R findOrderByUserId(@PathVariable("id") Integer id) {
log.info("根据userId:"+id+"查询订单信息");
//feign调用
R result = orderFeignService.findOrderByUserId(id);
return result;
}