基于适应度相关优化的BP神经网络(分类应用) - 附代码

news2024/11/20 23:18:00

基于适应度相关优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于适应度相关优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.适应度相关优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 适应度相关算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用适应度相关算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.适应度相关优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 适应度相关算法应用

适应度相关算法原理请参考:https://blog.csdn.net/u011835903/article/details/119946003

适应度相关算法的参数设置为:

popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从适应度相关算法的收敛曲线可以看到,整体误差是不断下降的,说明适应度相关算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1094570.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【软考】9.2 串/数组/矩阵/广义表/树

《字符串》 一种特殊的线性表,数据元素都为字符模式匹配:寻找子串第一次在主串出现的位置 模式匹配算法 1. 暴力破解法(布鲁特-福斯算法) 主串与子串一个个匹配效率低 2. KMP算法 主串后缀和子串前缀能否找到一样的元素&#xf…

轻量化Backbone | ShuffleNet+ViT结合让ViT也能有ShuffleNet轻量化的优秀能力

视觉Transformer(ViTs)在各种计算机视觉任务中表现出卓越的性能。然而,高计算复杂性阻碍了ViTs在内存和计算资源有限的设备上的适用性。尽管某些研究已经深入探讨了卷积层与自注意力机制的融合,以增强ViTs的效率,但在纯…

KOSMOS系列

Overview 总览摘要1 引言2 KOSMOS-2.52.1 Model Architecture2.1 Image and Text Representations2.3 Pre-training Data2.4 Data Processing2.5 Filtering and Quality Control 3 Experiments3.1 Evaluation3.2 Implementation Details3.3 Results3.4 Discussion 4 Related Wo…

车载多源融合定位

终端硬件由两部分组成,组合导航处理板和地磁导航处理板。 组合导航处理板负责采集加速度计、陀螺、GNSS和轮速计等数据进行组合导航解算,差分数据通过6Q主板获取到后通过串口发送至组合导航处理板。地磁导航处理板负责地磁数据采集,保存至数…

嵌入式实时操作系统的设计与开发 (启动过程学习)

b Reset; b Undef; b SWI; b PreAbort; b DataAbort; b . ;保留 b IRQ; b FIQ;建立异常向量表的过程,其中第一个指令通常都是存放在主存的零地址的。 异常向量表存放的全是汇编跳转指令,这些指令从主存的零地址(0x0)开始连续存储在…

Ubuntu下vscode dotNet downloading的问题(Cmake代码高亮)

问题描述:使用Cmake Language Support插件需要安装dotnet的支持库,我原本已经使用apt的方式安装了,但是进入vscode依旧要我下载。尝试按网上的方法修改为我指定的路径: "dotnetAcquisitionExtension.existingDotnetPath&quo…

Vsftp安装配置(超详细版)

目录 1 FTP、Vsftp介绍 1.1 FTP介绍 1.2 Vsftp介绍 1.3 Vsftp的登录类型 2 Vsftp安装配置 2.1 更换源 2.2 安装epel源 2.3 安装Vsftpd及相关依赖 2.4 vsftpd配置文件说明 2.5 vsftpd 配置详解 2.6 备份配置文件 3 vsftpd 配置匿名用户 3.1 编辑配置文件 3.2 常用的匿名FTP配置…

传输层 | UDP协议、TCP协议

之前讲过的http与https都是应用层协议,当应用层协议将报文构建好之后就要将报文往下层传输层进行传递,而传输层就是负责将数据能够从发送端传到接收端。 再谈端口号 端口号(port)标识了一个主机上进行通信的不同的应用程序,在TCP/IP协议中&…

让你的服务器变成游戏世界:打造游戏化在线社区的“秘诀”

引言 假如我有一台服务器,我希望打造一款游戏化的在线社区。那么,如何打造这样一个社区程序并成功运营呢?让我们一起来畅想吧! 一、确定社区的主题和目标群体 打造一款游戏化的在线社区,首先,我们需要明确…

【Android 性能优化:内存篇】——WebView 内存泄露治理

背景:笔者在公司项目中优化内存泄露时发现WebView 相关的内存泄露问题非常经典,一个 Fragment 页面使用的 WebView 有多条泄露路径,故记录下。 Fragment、Activity 使用WebView不释放 项目中一个Fragment 使用 Webview,在 Fragm…

区块链(12):java区块链项目之集群部署

选择3台服务器进行区块链项目部署 1 nginx部署页面 1.1 部署静态页面 1.2 nginx 反向代理的配置 修改nginx.conf文件 nginx 默认端口是http 80或者https443 将80代理到8080 location /blockchain {proxy_pass http://localhost:8080/blockchain;proxy_redirect default; …

深度学习-卷积神经网络

文章目录 应用卷积神经网络卷积处理分类问题 应用 图片分类图片检索图片分割图片风格迁移姿态估计OCR等 卷积神经网络 核概念计算机视觉中处理图片的核大小是通过经验得来的,而深度学习中的权重大小是自己学习出的。卷积VS神经网络:一个是局部观察一个…

进阶JAVA篇- LocalDate 类与 LocalTime 类、LocalDateTime 类的常用API(六)

目录 API 1.0 LocalDate 类与 LocalTime 类、LocalDateTime 类的API说明 1.1 如何创建LocalDate 类与 LocalTime 类、LocalDateTime 类的对象 1.2 LocalDate 类与 LocalTime 类、LocalDateTime 类中的以 get 开头实例方法 1.3 LocalDateTime 类中的 toLocalDat…

【Android】VirtualDisplay创建流程及原理

Android VirtualDisplay创建流程及原理 Android DisplayManager提供了createVirtualDisplay接口,用于创建虚拟屏。虚拟屏可用于录屏(网上很多资料说这个功能),分屏幕(比如一块很长的屏幕,通过虚拟屏分出不…

Windows服务器安装php+mysql环境的经验分享

php mysql环境 下载IIS Php Mysql环境集成包,集成包下载地址: 1、Windows Server 2008 一键安装Web环境包 x64 适用64位操作系统服务器:下载地址:链接: https://pan.baidu.com/s/1MMOOLGll4D7Eb5tBrdTQZw 提取码: btnx 2、Windows Server 2008 一键安装Web环境包 32 适…

【开篇】汇编语言之基础知识篇

文章目录 📋前言一. ⛳️机器语言二. ⛳️汇编语言的产生三. ⛳️汇编语言的组成四. ⛳️存储器五. ⛳️指令和数据六. ⛳️存储单元七. ⛳️CPU 对存储器的读写7.1 地址总线7.2 数据总线7.3 控制总线 📝总结 📋前言 🏠 个人主页&…

OOA/D 时统一过程(UP)中的 迭代、 进化 和 敏捷

一、迭代和进化式开发的优势 相对于顺序或“瀑布”软件开发模型,迭代和进化式开发(iterative and evolutionary development )对部分系统及早地引入了编程和测试,并重复这一循环。这种方式通常会还没有详细定义所有需求的情况下假…

阿里云易立:以云原生之力,实现大模型时代基础设施能力跃升 | KubeCon 主论坛分享

今天,由云原生计算基金会 CNCF 主办的 KubeConCloudNativeConOpenSourceSummit China 2023 主论坛在上海举办。阿里云容器服务负责人易立在主论坛发表演讲,介绍阿里云为大模型提供的基础设施能力,以及通过云原生 AI 的方式助力大模型普惠提效…

【Eclipse】设置自动提示

前言: eclipse默认有个快捷键:alt /就可以弹出自动提示,但是这样也太麻烦啦!每次都需要手动按这个快捷键,下面给大家介绍的是:如何设置敲的过程中就会出现自动提示的教程! 先按路线找到需要的页…

[计算机提升] 用户和用户组

1.1 用户和用户组 1.1.1 用户 用户账户是计算机操作系统中用于标识和管理用户身份的概念。 每个用户都拥有一个唯一的用户账户,该账户包含用户的登录名、密码和其他与用户身份相关的信息。 用户账户通常用于验证用户身份,并授权对系统资源的访问权限。…