本篇文章主要是实现的yolov5和reid结合的车辆重识别项目。是在我之前实现的yolov5_reid行人重识别的代码上修改实现的baseline模型。
目录
相关参考资料
数据集说明
环境说明
项目使用说明
vehicle reid训练
yolov5车辆重识别
从视频中获取想要检测的车(待检测车辆)
车辆查找
项目完整代码
相关参考资料
涉及到的相关资料如下:
参考的reid论文:Bag of Tricks and A Strong Baseline for Deep Person Re-identification(这应该是一篇19年的论文,可能稍微比较早了,但很有参考价值)
Reid代码详解:Reid strong baseline 代码详解
Reid之网络的定义:Reid之网络的定义代码详解
Reid训练代码之数据集处理:Reid训练代码之数据集处理
Reid损失函数理论学习:Reid损失函数理论学习
Reid度量学习Triplet loss:Reid度量学习之Triplet loss
yolov5_行人重识别:yolov5_行人重识别
数据集说明
数据集采用的是veri数据集,该数据集的格式与markt1501类似。
%******************************************************************************************************************% VeRi-776 Reference: Liu, Xinchen, et al. "Large-scale vehicle re-identification in urban surveillance videos." ICME 2016. URL:https://vehiclereid.github.io/VeRi/ Dataset statistics: # identities: 776 # images: 37778 (train) + 1678 (query) + 11579 (gallery) # cameras: 20 %******************************************************************************************************************% %%%%%% Content in the Zip file%%%%%%%%%% 1. "image_test" file. This file contains 11579 images for testing. 2. "image_train" file. This file contains 37778 images for training. 3. "image_query" file. It contains 1678 query images. Search is performed in the "image_test" file.
环境说明
torch >= 1.7.0
torchvision >=0.8.0
opencv-python 4.7.0.72
opencv-python-headless 4.7.0.72
numpy 1.21.6
matplotlib 3.4.3loguru 0.5.3
项目使用说明
该训练reid项目中vehicle_search与_search项目是独立的!!训练完reid后,把训练好的权重放到 vehicle_search/weights下,切换到vehicle_search_search项目中在去进行reid识别【不然有时候会报can't import xxx】。
项目仅包含reid的训练,不包含yolov5的训练,可以直接把yolov5的权重拿来用即可。
vehicle reid训练
将预权重下载后放置下项目weights中。
数据集放置在data/下,目录如下:
data/veri
|-- image_query
|-- image_test
|-- image_train
训练预权重下载链接:
将 r50_ibn_2.pth,resnet50-19c8e357.pth放在yolov5_vehicle_reid/weights下
链接:百度网盘 请输入提取码 提取码:yypn
train.py中的训练参数:
参数说明:
--config_file: 配置文件路径,默认configs/softmax_triplet.yml
--weights: Reid pretrained weight path
--neck: If train with BNNeck, options: bnneck or no
--test_neck: BNNeck to be used for test, before or after BNNneck options: before or after
--model_name: Name of backbone.
--pretrain_choice: Imagenet
--IF_WITH_CENTER: us center loss, True or False.
配置文件的修改
配置包含在两个目录文件中:
1.config/defaults.py为项目默认的配置文件
2.configs/下各yml文件为训练期间的配置文件
主要以yml配置文件为主,当两个配置文件参数名相同的时候以yml文件为主,这个需要注意一下。
configs文件:
以softmax_triplet.yml为例:
SOLVER: OPTIMIZER_NAME: 'Adam' # 优化器 MAX_EPOCHS: 120 # 总epochs BASE_LR: 0.00035 IMS_PER_BATCH: 8 # batch TEST: IMS_PER_BATCH: 4 # test batch RE_RANKING: 'no' WEIGHT: "path" # test weight path FEAT_NORM: 'yes' OUTPUT_DIR: "/logs" # model save path
训练命令:
python tools/train.py --weights 【预权重路径】--config_file configs/softmax_triplet.yml MODEL.DEVICE_ID "('0')" DATASETS.NAMES "('veri')" DATASETS.ROOT_DIR "(r'./data')
训练的权重会保存在logs/文件夹下。
yolov5车辆重识别
该项目可用于做reid识别,可用于做跨视频车辆识别
reid网络采用resnet50_ibn_a(权重需要和defaults.py中的MODEL.NAME对应),支持se_resnext50网络。权重见文末百度盘链接。
🔌注意:
该项目没有将yolov5训练加入,只是将检测功能和reid进行了整理。
vehicle_search下只进行检测,不进行reid的训练,reid的训练在yolov5_vehicle_reid中。
从视频中获取想要检测的车(待检测车辆)
python get_query.py
可从弹出的视频中利用鼠标框选待检测的车辆。
操作方法:
运行程序后用鼠标左键从目标左上角进行框选,按“空格”键继续播放视频(会自动把框选的图像进行保存)
该车辆图像会保存在query文件夹中,默认命名格式为veri。
ps:也可以直接将图像放在query文件中,但名字也需要按veri命名。
车辆查找
权重下载:
检测:将 训练好的reid权重放在👂vehicle/weights文件下,yolov5s.pt放vehicle_search下
链接:百度网盘 请输入提取码 提取码:yypn
修改reid/config/defaults.py中的_C.TEST.WEIGHT为reid权重路径
参数说明:
--weights: yolov5权重路径
--source: video/file/ path
--data: data/coco128.yaml
--imgsz: 输入图像大小,默认(640,640)
--conf_thres:置信度阈值
--iou_thres:iou阈值
--classes:过滤的类
--half:半精度推理
--dist_thres:reid对比的距离阈值(小于该阈值判断为同一个车)
--save_res:保存视频图像
python search.py --weights yolov5s.pt --source car.mp4 --dist_thres 1
如果需要检测视频或者多视频(跨视频检测),需要指定source路径。
项目完整代码
GitHub - YINYIPENG-EN/yolov5_vehicle_reid: yolov5+reid实现的车辆重识别