基于动物迁徙优化的BP神经网络(分类应用) - 附代码

news2024/11/26 10:42:31

基于动物迁徙优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于动物迁徙优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.动物迁徙优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 动物迁徙算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用动物迁徙算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.动物迁徙优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 动物迁徙算法应用

动物迁徙算法原理请参考:https://blog.csdn.net/u011835903/article/details/118729845

动物迁徙算法的参数设置为:

popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从动物迁徙算法的收敛曲线可以看到,整体误差是不断下降的,说明动物迁徙算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1092851.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

推荐八个大学搜题软件和学习工具哪个好用且免费,一起对比看看

以下分享的软件提供了各种实用的功能,如数学公式计算、语文阅读辅助等,让大学生们在学习过程中更加高效和便利。 1.九超查题 这是一个老公众号了,我身边的很多朋友都在用,支持超新星、学习强国、知到、智慧树和各类专业网课题目…

PCB板的元素组成

PCB板是电子工艺一道重要的步骤,市面上几乎所有的电子产品的主板组成都是PCB板。 那正常一块PCB板上有哪些元素呢?正常一般会包括边框,过孔,通孔,铺铜等等。 焊盘: 就是用于焊接元器件,IC等引脚…

NSSCTF做题(9)

[GDOUCTF 2023]<ez_ze> 看见输入框而且有提示说是ssti注入 输入{{7*7}} 试试&#xff0c;发现报错 输入{%%}发现了是jinja2模板 找到关键函数 Python SSTI利用jinja过滤器进行Bypass ph0ebuss Blog 原理见这篇文章&#xff0c;这里直接给出payload {%set ninedict(aaa…

电子电器架构——基于Adaptive AUTOSAR的电子电器架构简析

基于Adaptive AUTOSAR的电子电器架构简析 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…

Jetpack:007-Kotlin中的Button

文章目录 1. 概念介绍2. 使用方法2.1 Button2.2 IconButton2.3 ElevatedButton2.4 OutlinedButton2.5 TextButton2.6 FloatingActionButton 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack中输入框相关的内容&#xff0c;本章回中将要介绍 Button。闲话休提&#xff0…

微信小程序入门讲解【超详细】

一. 微信小程序简介 1.1 什么是小程序 2017年度百度百科十大热词之一 微信小程序&#xff08;wei xin xiao cheng xu&#xff09;&#xff0c;简称小程序&#xff0c;英文名Mini Program&#xff0c;是一种不需要下载安装即可使用的应用( 张小龙对其的定义是无需安装&#xf…

C++指针解读(5)-- 指针和数组(多维数组)

相比一维数组&#xff0c;二维数组的概念和相关运算要复杂得多。 1、二维数组的存储及访问 假设有这么一个二维数组&#xff1a; int arr[3][4] {{ 10, 11, 12, 13 },{ 20, 21, 22, 23 },{ 30, 31, 32, 33 } }; 我们可以把二维数组看成数组的数组&#xff1a; &#xff…

Spring Cloud--Nacos+@RefreshScope实现配置的动态更新

原文网址&#xff1a;Spring Cloud--NacosRefreshScope实现配置的动态更新_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍SpringCloud整合Nacos使用RefreshScope实现动态更新配置。 官网 Nacos Spring Cloud 快速开始 动态更新的介绍 动态更新的含义&#xff1a;修改应…

TOR(Top of Rack)

TOR TOR&#xff08;Top of Rack&#xff09;指的是在每个服务器机柜上部署1&#xff5e;2台交换机&#xff0c;服务器直接接入到本机柜的交换机上&#xff0c;实现服务器与交换机在机柜内的互联。虽然从字面上看&#xff0c;Top of Rack指的是“机柜顶部”&#xff0c;但实际T…

简述什么是值传递和引用传递?

1、什么是值传递,什么是引用传递? 值传递(pass by value)是指在调用函数时将实际参数复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数。 引用传递(pass by reference)是指在调用函数时将实际参数的地址直接传递到函数中,那么在函数中对参数…

位于同一子网下的ip在子网掩码配置错误的情况下如何进行通信(wireshrak抓包分析)

前言 最近看书发现个问题&#xff0c;正好想学习下wireshark的使用&#xff0c;于是抓包做了下实验。 问题是这样的&#xff0c;假设有服务器A和服务器B&#xff0c;正确配置下两者处于同一子网&#xff1b;此时B的网络配置正确&#xff0c;而A在配置子网掩码时出了错&#xff…

Linux寄存器+Linux2.6内核进程调度队列+命令行参数+环境变量

目录 一、寄存器 二、Linux2.6内核进程调度队列 &#xff08;一&#xff09;优先级 &#xff08;二&#xff09;活动队列 &#xff08;三&#xff09;过期队列 &#xff08;四&#xff09;active指针和expired指针 三、命令行参数 &#xff08;一&#xff09;举例一 &…

二分查找:如何用最省内存的方式实现快速查找功能?

文章来源于极客时间前google工程师−王争专栏。 有序数据集合的查找算法&#xff1a;二分查找(Binary Search)算法&#xff0c;也叫折半查找算法。二分查找的思想非常简单&#xff0c;但是难掌握好&#xff0c;灵活运用更加困难。 问题&#xff1a;假设有1000万个整数数据&…

用 Three.js 创建一个酷炫且真实的地球

接下来我会分步骤讲解&#xff0c;在线示例在数字孪生平台。 先添加一个球体 我们用threejs中的SphereGeometry来创建球体&#xff0c;给他贴一张地球纹理。 let earthGeo new THREE.SphereGeometry(10, 64, 64) let earthMat new THREE.MeshStandardMaterial({map: albed…

2023年建筑电工(建筑特殊工种)证考试题库及建筑电工(建筑特殊工种)试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年建筑电工(建筑特殊工种)证考试题库及建筑电工(建筑特殊工种)试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特种设备作业人…

搭建Umijs环境并创建一个项目 介绍基本操作

上文 Umijs介绍中 我们简单了解了一下这个东西 这里 我们还是不要关说不练了 直接终端执行 npm install -g umi可能会比较久 因为这个东西还挺大的 我们执行 umi -v这里就会输出版本 然后 我们创建一个文件夹目录 作为项目目录 然后 我们可以 通过 终端输入 mkdir 项目名称…

使用 Go 和 Wails 构建跨平台桌面应用程序

由于多种原因&#xff0c;Electron 曾经&#xff08;并且仍然&#xff09;大受欢迎。首先&#xff0c;其跨平台功能使开发人员能够从单个代码库支持 Linux、Windows 和 macOS。最重要的是&#xff0c;它对于熟悉 Javascript 的开发人员来说有一个精简的学习曲线。 尽管它有其缺…

LENOVO联想笔记本小新 Pro-14 2021AMD处理器ACH版(82MS)原厂Win10系统

下载链接&#xff1a;https://pan.baidu.com/s/1-KZ8Y9NmkS7nDXcMbhZLHw?pwdyrkx 系统自带所有驱动、出厂主题壁纸、系统属性专属LOGO标志、Office办公软件、lenovo联想电脑管家等预装程序 所需要工具&#xff1a;16G或以上的U盘 文件格式&#xff1a;ISO 文件大小&#xff1…

VScode运行C/C++

VScode运行C/C VScode的安装这里不讲 一、mingw64的下载 二、VS code打开文件夹与创建C文件 ----------------这一步给萌新看&#xff0c;有C和VScode的基础可跳过---------------- 1.创建一个文件夹 2.vscode打开刚刚创建的文件夹 3.新建文件&#xff0c;在输入文件名1.c后…

C语言中的文件操作指南

阅读导航 前言一、文件类型1. 程序文件2. 数据文件PS.文件名 二、文件的打开和关闭1. 文件指针2. 文件的打开和关闭 三、文件的顺序读写四、文件的随机读写1. fseek() 函数2. ftell() 函数3. rewind() 函数 总结 前言 在C语言中&#xff0c;文件操作是一项重要的任务。通过文件…