【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)

news2025/1/11 22:57:27

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文基于PyTorch通过tensor点积所需要的时间来对比GPU与CPU的计算速度,并介绍tensorboard的使用方法。

我在前面的科普文章——GPU如何成为AI的加速器GPU如何成为AI的加速器_使者大牙的博客-CSDN博客GPU如何成为AI的加速器 解释了GPU的多核心架构相比CPU更适合简单大量的计算,而深度学习计算的底层算法就是大量矩阵的点积和相加,本文将通过张量的点积运算来说明:与CPU相比,GPU有多“适合”深度学习算法。

加法相比于点积的计算量太小了,我感觉体现不出GPU的优势,所以没有用加法来对比两者的算力差距。

1. 准备工作

1.0 一台有Nvidia独立显卡的电脑

既然要使用GPU计算,一台有Nvidia独立显卡=支持CUDA的GPU的电脑就是必须的前置条件。如果不清楚CUDA、GPU和Nvidia关系的同学,可以再看下我的文章:GPU如何成为AI的加速器_使者大牙的博客-CSDN博客

1.1 PyTorch

在PyTorch的官网:Start Locally | PyTorch 选择合适的版本:

这里需要注意的是PyTorch的CUDA版本需要匹配电脑的GPU的CUDA版本,一般来说电脑>PyTorch的CUDA版本就没问题了。

例如我安装的PyTorch是CUDA 11.8版本,我的GPU驱动版本是12.2(查看路径:Nvidia控制面板>帮助>系统信息)。

1.2 Tensorboard

Tensorboard是TensorFlow官方提供的一个可视化工具,用于可视化训练过程中的模型图、训练误差、准确率、训练后的模型参数等,同时还提供了交互式的界面,让用户可以更加方便、直观地观察和分析模型。

这里需要注意的是Tensorboard虽然是由TensorFlow提供的,但是使用Tensorboard不需要安装TensorFlow!只要在虚拟环境下安装TensorboardX和Tensorboard即可,我使用的是Anaconda Prompt:

pip install tensorboardX
pip install tensorboard

其使用方法为:

from torch.utils.tensorboard import SummaryWriter


writer = SummaryWriter("../logs")  #这里有两个"."

writer.add_scalars(main_tag, tag_scalar_dict, global_step=None):

writer.close()

另外需要注意SummaryWriter后面的路径要有两个“.”,这是因为我的代码文件在D:\DL\CUDA_test二级文件夹下面,我们需要把生成的tensorboard的event文件放在D:\DL\logs下面,而不是D:\DL\CUDA_test\logs路径下。这样做的理由是避免tensorboard报“No scalar data was found”

这里使用的是.add_scalars()方法来绘制多条曲线,参数如下:

  • main_tag:字符串类型,要绘制的曲线主标题,本实例为“GPU vs CPU”
  • tag_scalar_dict:字典类型,要绘制多条曲线的因变量,本实例为GPU和CPU的计算时间
    {'GPU':CUDA,'CPU':CPU}
  • global_step: 标量,要绘制多条曲线的因变量,本实例为张量的大小tensor_size

在event文件生成后再在PyCharm的终端输入 tensorboard --logdir=logs ,点击链接就可以在浏览器中查看生成的曲线了。

2. 对比GPU与CPU的计算速度

本文的实例问题非常简单:分别使用CPU和GPU对尺寸为[tensor_size, tensor_size]的2个张量进行点积运算,使用time库工具对计算过程进行计时,对比CPU和GPU所消耗的时间。张量的大小tensor_size取值从1到10000。

我使用的硬件信息如下:

CPU:AMD Ryzen 9 7940H

GPU:NVIDIA GeForce RTX 4060

CPU计算时间:

import torch
import time


def CPU_calc_time(tensor_size):
    a = torch.rand([tensor_size,tensor_size])
    b = torch.rand([tensor_size,tensor_size])
    start_time = time.time()
    torch.matmul(a,b)
    end_time = time.time()

    return end_time - start_time

GPU计算时间:

import torch
import time

def CUDA_calc_time(tensor_size):
    device = torch.device('cuda')

    a = torch.rand([tensor_size,tensor_size]).to(device)
    b = torch.rand([tensor_size,tensor_size]).to(device)
    start_time = time.time()
    torch.matmul(a,b).to(device)
    end_time = time.time()

    return end_time - start_time

3. 结果分析

最终生成的CPU和GPU计算张量点积的时间曲线如下:

从图中可以看出,随着张量尺寸的增大,CPU计算时间明显增加(0~11.3s),而GPU的计算时间基本不变(0.001s左右),张量尺寸越大GPU的计算优势就越明显。

4. 完整代码

import torch
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

torch.manual_seed(1)

def CPU_calc_time(tensor_size):
    a = torch.rand([tensor_size,tensor_size])
    b = torch.rand([tensor_size,tensor_size])
    start_time = time.time()
    torch.matmul(a,b)
    end_time = time.time()

    return end_time - start_time

def CUDA_calc_time(tensor_size):
    device = torch.device('cuda')

    a = torch.rand([tensor_size,tensor_size]).to(device)
    b = torch.rand([tensor_size,tensor_size]).to(device)
    start_time = time.time()
    torch.matmul(a,b).to(device)
    end_time = time.time()

    return end_time - start_time


if __name__ == "__main__":

    writer = SummaryWriter("../logs")

    for tensor_size in tqdm(range(1,10000,50)):

        CPU = CPU_calc_time(tensor_size)
        CUDA = CUDA_calc_time(tensor_size)
        writer.add_scalars('GPU vs CPU',{'GPU':CUDA,'CPU':CPU},tensor_size)

    writer.close()

# Command Prompt   "tensorboard --logdir=logs"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1092699.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【VSCode】Windows环境下,VSCode 搭建 cmake 编译环境(VSCode 插件配置)

目录 一、下载编译器 1、下载 Windows GCC 2、选择编译器路径 二、下载插件 三、配置 cmake generator 四、编译工程 一、下载编译器 1、下载 Windows GCC 这里是在Windows环境下,所以下载的是 Windows 环境使用的 gcc 编译器。 下载地址: MinGW-w64 - for…

【数据库系统概论】第九章关系查询处理何查询优化

9.1查询处理 一:查询处理步骤 关系数据库管理系统查询处理可以分为4个阶段: 查询分析查询检查查询优化查询执行 (1)查询分析 任务:对查询语句进行扫描,分析词法、语法是否符合SQL语法规则 如果没有语…

[MySQL]存储引擎、索引、SQL优化

文章目录 1. 存储引擎1.1 MySQL体系结构1.2 存储引擎简述1.3 存储引擎的特点1.3.1 innoDB1.3.2 MyISAM1.3.3 Memory1.3.4 存储引擎的选择 2. Linux下的MySQL3. 索引3.1 索引概述3.2 索引结构3.3 索引分类3.4 索引语法3.5 索引性能分析3.6 索引的使用3.6.1 索引失效3.6.2 索引使…

【LeetCode刷题(数据结构)】:给定一个链表 每个节点包含一个额外增加的随机指针 该指针可以指向链表中的任何节点或空节点 要求返回这个链表的深度拷贝

给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成,其中每个新节点的值都设为其对应的原节点的值。新节点的 next…

深入探索BP神经网络【简单原理、实际应用和Python示例】

人工神经网络(Artificial Neural Networks)是一种受到生物神经网络启发的机器学习模型,它的应用范围广泛,包括图像识别、语音识别、自然语言处理等领域。其中,BP神经网络(Backpropagation Neural Network&a…

学习笔记-MongoDB(复制集,分片集集群搭建)

复制集群搭建 基本介绍 什么是复制集? 复制集是由一组拥有相同数据集的MongoDB实例做组成的集群。 复制集是一个集群,它是2台及2台以上的服务器组成,以及复制集成员包括Primary主节点,Secondary从节点和投票节点。 复制集提供了…

花2个月时间学习,面华为测开岗要30k,面试官竟说:你不是在搞笑。。。

背景介绍 计算机专业,代码能力一般,之前有过两段实习以及一个学校项目经历。第一份实习是大二暑期在深圳的一家互联网公司做前端开发,第二份实习由于大三暑假回国的时间比较短(小于两个月),于是找的实习是…

通用考勤后台管理系统

考勤后台系统,包括待办事项、人员管理、任务中心、任务详情、我的任务、客户管理、考勤功能几大功能,本后台系统以考勤打卡为主要功能,采用分屏布局的方式,简洁大方,使用方便

mysqlbinlog 日用记录

我是同步覆盖了两张表,现在想用日志恢复。 先说结论,没有恢复,因为我的日志不完整,设置了定时清理。 如果你truncate了表或者数据库,如果没有完整的日志是恢复不了数据的。 第一、mysqlbinlog 可能没开启 第二、开…

C++入门 第一篇(C++关键字, 命名空间,C++输入输出)

目录 1. C关键字 2. 命名空间 2.1 命名空间定义 2.2命名空间的使用 命名空间的使用有三种方式: 1.加命名空间名称及作用域限定符 2.使用using将命名空间中某个成员引入 3.使用using namespace 命名空间名称 引入 3. C输入&输出 4.缺省函数 4.1 缺省参…

微信开发者工具下载

一、微信开发者工具下载官网 微信开发者工具下载地址与更新日志 | 微信开放文档 (qq.com) 二、微信开发者工具界面 下载安装好后,软件图标如下图所示。 运行软件如下图所示,这时候就需要使用你的管理员账号扫码登录。 登陆后的界面,如下图…

为知笔记一个日记模板

<!DOCTYPE HTML><html><head> <meta http-equiv"Content-Type" content"text/html; charsetunicode"> <title>日记&#xff1a;</title><style id"wiz_custom_css">html, .wiz-editor-body {font-siz…

Lua调用C#类

先创建一个Main脚本作为主入口&#xff0c;挂载到摄像机上 public class Main : MonoBehaviour {// Start is called before the first frame updatevoid Start(){LuaMgr.GetInstance().Init();LuaMgr.GetInstance().DoLuaFile("Main");}// Update is called once p…

Stm32_标准库_11_ADC_光敏热敏传感器_测数值

在测量光敏传感器数值得基础上手动将通道改成热敏传感器通道即可 由于温度传感器的测量范围是-20 ~ 105摄氏度&#xff0c;所以输出温度得考虑带上符号这就需要在原有输出光照强度代码的基础上新添加几个函数 函数1&#xff1a; uint16_t AD_Getvailue(uint8_t ADC_Channel){…

C# PortraitModeFilter (人物图片)背景模糊

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Linq; using System.Windows.Forms; us…

python文本转语音

概述 目前有文本转语音的技术&#xff0c;可以用在配音领域&#xff0c;我个人因为一些需求&#xff0c;所以开始寻找这方面的资源&#xff0c;目前各大平台&#xff0c;比如腾讯&#xff0c;讯飞&#xff0c;阿里&#xff0c;百度等都有这样的API服务&#xff0c;我个人是是使…

Multi Scale Supervised 3D U-Net for Kidney and Tumor Segmentation

目录 摘要1 引言2 方法2.1 预处理和数据增强2.2 网络的体系结构2.3 训练过程2.4 推理与后处理 3 实验与结果4 结论与讨论 摘要 U-Net在各种医学图像分割挑战中取得了巨大成功。一些新的、带有花里胡哨功能的架构可能在某些数据集中在使用最佳超参数时取得成功&#xff0c;但它们…

力扣-463.岛屿的周长

Idea 注意观察&#xff0c;每一个完整的方块&#xff0c;边长都是加4&#xff0c;一旦这个方块有其他的方块相邻的话&#xff0c;那么这两个方块总边长就要减少2. 因此我们遍历二维数组的时候&#xff0c;判断岛屿方块的上面还有左方是否有相邻即可 class Solution { public:in…

Linux 64位 C++协程池原理分析及代码实现

导语 本文介绍了协程的作用、结构、原理&#xff0c;并使用C和汇编实现了64位系统下的协程池。文章内容避免了协程晦涩难懂的部分&#xff0c;用大量图文来分析原理&#xff0c;适合新手阅读学习。 GitHub源码 1. Web服务器问题 现代分布式Web后台服务逻辑通常由一系列RPC请…

算法村开篇

大家好我是苏麟从今天开始我将带来算法的一些习题和心得体会等等...... 算法村介绍 我们一步步地学习算法本专栏会以闯关的方式来学习算法 循序渐进地系统的学习算法并掌握大部分面试知识 , 期待和大家一起进步 . 索大祝大家学有所成 , 前程似锦.