数据仓库DW-理论知识储备

news2024/11/26 15:34:38

数据仓库DW

数据仓库具备 采集数据、分析数据、存储数据的功能,最后得出一些有用的数据,一些目标数据来使用。

采集来自不同源的数据,然后对这些数据进行分析和计算得出一些有用的指标,提供数据决策支持。

数据的来源有:系统的业务数据、用户的行为数据、爬虫数据等。

数据仓库包含:实时数据仓库、离线数据仓库。

在这里插入图片描述

数仓分层

数据仓库中的数据一般经过一下几层处理:参考来自

1.ODS
ODS主要完成:

(1)保持数据原貌不做任何修改,保留历史数据,储存起到备份数据作用,采集过来是什么数据就存储什么数据;

(2)数据一般采用lzo、Snappy、parquet等压缩格式;

(3)创建分区表,防止后续的全表扫描,减少集群资源访问数仓的压力,一般按天存储在数仓中。

2.DWD

DWD主要完成:

1. 数据清洗
(1)去除空值、脏数据、超过极限范围的数据。
(2)过滤核心字段无意义的数据,比如订单表中订单 id 为 null,支付表中支付 id 为空
(3)将用户行为宽表和业务表进行数据一致性处理

        清洗的手段包括Sql、mr、rdd、kettle、Python等等。清洗掉数据不能太多也不能很少。合理范围:1 万条数据清洗掉 1 条。

2. 脱敏
        对手机号(181****7089)、身份证号等敏感数据脱敏

3. 维度退化
        对业务数据传过来的表进行维度退化和降维。(商品一级二级三级、省市县、年月日)

4. 压缩

        LZO,列式存储 parquet

3.DWS

        以DWD为基础,进行轻度的汇总。预聚合。
        DWS层就是关于各个主题的加工和使用,这层是宽表聚合值,是各个事实表的聚合值。这里做轻度的汇总会让以后的计算更加的高效,如:统计各个主题对象计算7天、30天、90天的行为, 应对特殊需求(例如,购买行为,统计商品复购率)会快很多不必走ODS层反复拿数据做加工。     

        这层会把每个用户单日的行为聚合起来组成一张多列宽表,以便之后关联用户维度信息后进行,不同角度的统计分析。

        涉及的主题包括:访客主题、用户主题、商品主题、优惠券主题、活动主题、地区主题等

      

4.DWT
        这层涉及的主题和DWS层一样包括:访客主题、用户主题、商品主题、优惠券主题、活动主题、地区主题等。只不过DWS层的粒度是对当日用户汇总信息,而DWT层是对截止到当日、或者近7日、近30日等的汇总信息。

        以用户主题这个来举列:

*DWS层:用户主题层是记录某一个用户在某一天的汇总行为。

*DWT层:用户主题层是记录某一个用户截止在当日的汇总行为。

5.ADS

统计指标。
ADS层数据是专门给业务使用的数据层,这层是面向业务定制的应用数据层。

ADS主要完成:

(1)提供为数据产品使用的结果数据、指标等。

(2)提供给数据产品和数据分析使用的数据,一般会存放在 ES、MySQL等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。如报表数据,或者说那种大宽表。

        这个项目中ADS层也是包含有多个主题:设备主题、会员主题、商品主题、营销主题、地区主题、访客主题、用户主题、订单主题、优惠券主题、活动主题等等。每个主题都包含多个指标的计算。

离线数仓

通常是批处理数据,一般一天处理一次,所以是批处理数据量大,处理时间长

离线数仓架构参考图

业务数据存储在MySQL,用户行为数据存储在日志文件中。这两个数据源都要先采集进来然后进行分析计算等,因为数据量会比较大,所以采用Hadoop的HDFS存储。

业务数据在MySQL中,由于是离线数仓,所以每天进行全量同步一次数据到HDFS中即可,这边我也不知道为啥还要进行增量同步到kafka中,然后由消费者发送给HDFS存储。

日志文件由flume监控采集,又因为日志文件比较大,如果flume采集完就直接发送给HDFS效率不好,所以flume采集完先发送给kafka的主题中,接着flume消费者订阅这个主题,消费日志文件发送给HDFS存储,kafka消息队列在这起消峰的作用。

经过上面的步骤后,数据就全部来到了HDFS中供使用。数据经过ODS、DWD、DWS、ADS层层处理产生想要的结果后,数据处理经过这些层,这些层总要有先后,定时任务调度的作用就是:如果数据在ODS处理好了,就可以自动进入到下一层DWD继续处理。层层处理后的想要结果由DataX将结果每日同步到MySQL中方便进行后续的使用,比如Superset可视化展示。

实时数仓

数据源源不断的来,流式处理数据,处理时间较短。

实时数仓用来处理那些实时性高的数据。

实时数仓架构参考图

实时的话,创建flink消费者从kafka中取出数据,那我就理解了为啥业务数据也要增量同步发给kafka了,因为实时处理需要,所以kafka就是ods层,flink进行简单处理后发送给DWD层。

flume采集文件案例

以下的架构就是一个实时数仓的简单架构,flume一直监控数据文件,只要一有文件来,就会被flume采集然后发给kafka主题,接着就会被flink消费。

在这里插入图片描述

用户行为数据:用户在使用产品过程中,通过埋点收集与客户端产品交互过程中产生的数据,并发往日志服务器进行保存。比如页面浏览、点击、停留、评论、点赞、收藏等。由于用户的行为数据比较多,所以用户行为数据通常存储在日志文件中。

 在flume的家目录中,采集一个job文件夹存放flume的配置文件,file_to_kafka.conf:

a1.sources = r1
a1.channels = c1

#配置source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /mydata/spoolingDir

#配置channel         org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = 192.168.10.128:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#组装 
a1.sources.r1.channels = c1

启动:

bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.logger=info,console

  • bin/flume-ng:这是启动 Flume 的可执行文件。
  • agent:指定要运行的 Flume 组件类型,这里是代理(agent)。
  • -n a1:指定代理的名称,这里是 "a1"。
  • -c conf/:指定配置文件的目录,Flume 会在该目录下查找配置文件。
  • -f job/file_to_kafka.conf:指定要使用的配置文件的路径,这是 Flume 的配置文件,它描述了数据传输的配置。
  • -Dflume.root.logger=info,console:设置 Flume 的日志级别和输出方式。在此设置中,日志级别为 "info",并将日志输出到控制台。

数仓技术选型

数据采集:如果数据是以文件形式存在可以使用flume监控采集,MySQL中的数据可以使用DataX采集

数据存储:数据量比较小可以用MySQL存储,数据量大用HDFS

数据计算:实时性要求高用flink流式处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1090150.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[华为杯研究生创新赛 2023] 初赛 REV WP

前言 一年没打比赛了, 差一题进决赛, REV当时lin的第三个challenge没看出来是凯撒, 想得复杂了, 结果错失一次线下机会 >_< T4ee 动态调试, nop掉反调试代码 发现处理过程为 置换sub_412F20处理(这里看其他师傅的wp知道应该是rc4, 我是直接en逆的buf字符串中每一位和…

GPIO子系统(三)

1&#xff0c;简述 GPIO 资源是相对来说较为简单&#xff0c;而且比较通用&#xff08;比如 LED 灯&#xff09;&#xff0c;而 Linux 的 GPIO 驱动属于 Linux Driver 中较为容易上手的部分&#xff0c;但是简单归简单&#xff0c;在 Linux 系统中&#xff0c;要使用 GPIO 资源…

BootStrap-前端框架

资料:https://v3.bootcss.com/components/ BootStrap的概念&#xff08;Web框架&#xff09; Bootstrap&#xff0c;来自 Twitter&#xff0c;是目前很受欢迎的前端框架。Bootstrap 是基于 HTML、CSS、JavaScript 的&#xff0c;它简洁灵活&#xff0c;使得 Web 开发更加快捷。…

聚观早报 | “百度世界2023”即将举办;2024款岚图梦想家上市

【聚观365】10月13日消息 “百度世界2023”即将举办 2024款岚图梦想家上市 腾势D9用户超10万 华为发布新一代GigaGreen Radio OpenAI拟进行重大更新 “百度世界2023”即将举办 “百度世界2023”将于10月17日在北京首钢园举办。届时&#xff0c;百度创始人、董事长兼首席执…

5、docker mysql安装

1、查看版本 docker search mysql 2、下载镜像到本地 下载镜像&#xff0c;本文以5.7为例 docker pull mysql:5.7 3、创建挂载目录 mkdir /usr/local/mysql 4、创建mysql容器 docker run --name mysql-test -e MYSQL_ROOT_PASSWORDroot -p 3306:3306 -d mysql –name&am…

最详细STM32,cubeMX 按键点亮 led

这篇文章将详细介绍 如何在 stm32103 板子上使用 按键 点亮一个LED. 文章目录 前言一、如何控制按键&#xff1f;为什么按键要接上拉电阻或者下拉电阻呢&#xff1f; 二、cubeMX配置工程自动生成代码解析 三、读取引脚电平函数四、按键为什么要消抖如何消除消抖 五、实现按键控…

如何提高MES系统的落地成功率?

导 读 ( 文/ 2768 ) 制造执行系统&#xff08;MES&#xff09;在现代制造业中扮演着至关重要的角色&#xff0c;但实施MES系统并取得成功并非易事。为了帮助企业提高MES系统的落地成功率&#xff0c;本文将介绍关键的方法和策略。通过深入了解业务需求、有效的团队合作、全面的…

基于nodejs+vue大学食堂订餐系统

模块包括主界面&#xff0c;首页、个人中心、管理员管理、用户管理、菜品管理、论坛管理、公告管理、基础数据管理、目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1nodejs简介 4 2.2 express框…

《从菜鸟到大师之路 正则表达式 篇》

《从菜鸟到大师之路 正则表达式 篇》 正则表达式是一个强大的文本匹配工具。但是&#xff0c;对于前端初学者来说&#xff0c;众多的符号和规则可能让人难以理解。其实&#xff0c;你不需要记住所有的正则表达式语法&#xff01;本文将分享一些简单而实用的技巧&#xff0c;帮…

asp.net酒店餐饮管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net酒店餐饮管理系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言 开发 ASP.NE 酒店餐饮管理系统 二、功能…

HSN:微调预训练ViT用于目标检测和语义分割,华南理工和阿里巴巴联合提出

今天跟大家分享华南理工大学和阿里巴巴联合提出的将ViT模型用于下游任务的高效微调方法HSN&#xff0c;该方法在迁移学习、目标检测、实例分割、语义分割等多个下游任务中表现优秀&#xff0c;性能接近甚至在某些任务上超越全参数微调。 论文标题&#xff1a;Hierarchical Side…

第六章:路由交换机及操作系统

路由交换机及操作系统 一、路由器与交换机的作用与特点1.路由器1.1 作用1.2 特点 2.交换机2.1 作用2.2 特点 二、H3C路由器与交换机介绍1. 路由器2. 交换机 三、 H3C网络设备操作系统Comware1. 介绍2. 特点![在这里插入图片描述](https://img-blog.csdnimg.cn/2b24103028654878…

玻璃生产过程中的窑内压力高精度恒定控制解决方案

摘要&#xff1a;在玻璃生产中对玻璃窑炉中窑压的要求极高&#xff0c;通常需要控制微正压4.7Pa&#xff08;表压&#xff09;&#xff0c;偏差控制在0.3Pa&#xff0c;而窑炉压力还会受到众多因素的影响&#xff0c;所以实现高稳定性的熔窑压力控制具有很大难度&#xff0c;为…

Codeforces Round 903 (Div. 3)ABCDE

Codeforces Round 903 (Div. 3)ABCDE 目录 A. Dont Try to Count题目大意思路核心代码 B. Three Threadlets题目大意思路核心代码 C. Perfect Square题目大意思路核心代码 D. Divide and Equalize题目大意思路核心代码 E. Block Sequence题目大意思路核心代码 A. Don’t Try t…

【问题解决】【爬虫】抓包工具charles与pycharm发送https请求冲突问题

问题&#xff1a; 开启charles抓包&#xff0c;运行pycharm发送https请求报以下错误 解决&#xff1a; 修改python代码&#xff0c;发送请求时添加verify false&#xff0c;此时charles也能抓取到pycharm发送的请求 2. 关闭charles抓包&#xff0c;取消勾选window proxy

JVM第六讲:JVM 基础 - Java 内存模型引入

JVM 基础 - Java 内存模型引入 很多人都无法区分Java内存模型和JVM内存结构&#xff0c;以及Java内存模型与物理内存之间的关系。本文是JVM第六讲&#xff0c;从堆栈角度引入JMM&#xff0c;然后介绍JMM和物理内存之间的关系, 为后面JMM详解, JVM 内存结构详解, Java 对象模型详…

uniapp封装loading 的动画动态加载

实现效果 html代码 <view class"loadBox" v-if"loading"><img :src"logo" class"logo"> </view> css代码 .loadBox {width: 180rpx;min-height: 180rpx;border-radius: 50%;display: flex;align-items: center;j…

最新版nacos 2.2.3服务注册与发现版本依赖问题

最新版nacos的注册服务时配置文件写的是对的&#xff0c;但就是在nacos web页面无法看见服务&#xff0c;此时你需要注意你的依赖是否正确 spring: application:name: orderservicecloud:nacos:discovery:server-addr: 122.51.115.127:8848父工程依赖&#xff1a;现在最新的s…

046:mapboxGL加载天地图路网图+标记(wmts方式)

第046个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中加载天地图路网图+标记(wmts方式)。瓦片中的url地址引用的是天地图的wmts的形式。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共99行)相关AP…

Ceph运维笔记

Ceph运维笔记 一、基本操作 ceph osd tree //查看所有osd情况 ceph -s //查看整体ceph情况 health_ok才是正常的 ceph osd out osd.1 //将osd.1踢出集群 ceph osd in osd.1 //将out的集群重新加入集群二、问题解决 1.执行ceph-deploy mon create-initial出错 e…