1,简述
GPIO 资源是相对来说较为简单,而且比较通用(比如 LED 灯),而 Linux 的 GPIO 驱动属于 Linux Driver 中较为容易上手的部分,但是简单归简单,在 Linux 系统中,要使用 GPIO 资源,还是需要了解一些内容。
Linux Kernel 中对 GPIO 资源进行了抽象,抽象出一个叫做 Gpiolib 的东东,这个东东作为 GPIO 资源的管理核心存在:
中间层是 Gpiolib,用于管理系统中的 GPIO。Gpiolib 汇总了 GPIO 的通用操作,根据 GPIO 的特性,Gpiolib 对上(其他 Drivers)提供的一套统一通用的操作 GPIO 的软件接口,屏蔽了不同芯片的具体实现。对下,Gpiolib 提供了针对不同芯片操作的一套 framework,针对不同芯片,只需要实现 Specific Chip Driver ,然后使用 Gpiolib 提供的注册函数,将其挂接到 Gpiolib 上,这样就完成了这一套东西。
对于其他驱动来说,比如 LED 灯驱动,就需要用到通用的 Gpiolib 的函数来进行 I/O 口的操作。
2,Gpiolib相关数据结构分析
先分析数据结构,Gpiolib 其实就是围绕几个数据结构在做文章,数据结构以及抽象层次清楚了,代码自然很快。
数据结构主要定义在 include/linux/gpio/driver.h 和 /drivers/gpio/gpiolib.h 中
首先看一个数据结构,叫 struct gpio_chip (include/linux/gpio/driver.h):
struct gpio_chip {
const char *label;
struct gpio_device *gpiodev;
struct device *parent;
struct module *owner;
int (*request)(struct gpio_chip *gc,
unsigned int offset);
void (*free)(struct gpio_chip *gc,
unsigned int offset);
int (*get_direction)(struct gpio_chip *gc,
unsigned int offset);
int (*direction_input)(struct gpio_chip *gc,
unsigned int offset);
int (*direction_output)(struct gpio_chip *gc,
unsigned int offset, int value);
int (*get)(struct gpio_chip *gc,
unsigned int offset);
int (*get_multiple)(struct gpio_chip *gc,
unsigned long *mask,
unsigned long *bits);
void (*set)(struct gpio_chip *gc,
unsigned int offset, int value);
void (*set_multiple)(struct gpio_chip *gc,
unsigned long *mask,
unsigned long *bits);
int (*set_config)(struct gpio_chip *gc,
unsigned int offset,
unsigned long config);
int (*to_irq)(struct gpio_chip *gc,
unsigned int offset);
void (*dbg_show)(struct seq_file *s,
struct gpio_chip *gc);
int (*init_valid_mask)(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios);
int (*add_pin_ranges)(struct gpio_chip *gc);
int base;
u16 ngpio;
const char *const *names;
bool can_sleep;
#if IS_ENABLED(CONFIG_GPIO_GENERIC)
unsigned long (*read_reg)(void __iomem *reg);
void (*write_reg)(void __iomem *reg, unsigned long data);
bool be_bits;
void __iomem *reg_dat;
void __iomem *reg_set;
void __iomem *reg_clr;
void __iomem *reg_dir_out;
void __iomem *reg_dir_in;
bool bgpio_dir_unreadable;
int bgpio_bits;
spinlock_t bgpio_lock;
unsigned long bgpio_data;
unsigned long bgpio_dir;
#endif /* CONFIG_GPIO_GENERIC */
#ifdef CONFIG_GPIOLIB_IRQCHIP
/*
* With CONFIG_GPIOLIB_IRQCHIP we get an irqchip inside the gpiolib
* to handle IRQs for most practical cases.
*/
/**
* @irq:
*
* Integrates interrupt chip functionality with the GPIO chip. Can be
* used to handle IRQs for most practical cases.
*/
struct gpio_irq_chip irq;
#endif /* CONFIG_GPIOLIB_IRQCHIP */
/**
* @valid_mask:
*
* If not %NULL holds bitmask of GPIOs which are valid to be used
* from the chip.
*/
unsigned long *valid_mask;
#if defined(CONFIG_OF_GPIO)
/*
* If CONFIG_OF is enabled, then all GPIO controllers described in the
* device tree automatically may have an OF translation
*/
/**
* @of_node:
*
* Pointer to a device tree node representing this GPIO controller.
*/
struct device_node *of_node;
/**
* @of_gpio_n_cells:
*
* Number of cells used to form the GPIO specifier.
*/
unsigned int of_gpio_n_cells;
/**
* @of_xlate:
*
* Callback to translate a device tree GPIO specifier into a chip-
* relative GPIO number and flags.
*/
int (*of_xlate)(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec, u32 *flags);
#endif /* CONFIG_OF_GPIO */
ANDROID_KABI_RESERVE(1);
ANDROID_KABI_RESERVE(2);
};
gpio_chip 这个数据结构一看,很多函数指针结构,明眼人秒懂,此结构是为了抽象 GPIO 的所有操作,同时适配不同芯片的一个 common 的结构,所以,这个结构是要开出去给其他芯片进行特定的操作赋值的,比如你是 Qcom 的芯片,那么你需要实现你的这些 gpio_chip 的内容。
2.1 gpio_chip 结构
一般的,在一个芯片中,针对所有的 I/O 口都会有配置,默认状态有些是 I/O 口全部默认 GPIO 输入(稳当)。一般芯片会提供管脚复用的功能(后期的 Linux 版本中,使用 pin control 来抽象),要使用 GPIO ,则首先需要配置他为 GPIO 功能,而不是其他的复用功能。
而针对 GPIO 呢,有一些通用的特性,比如设置 GPIO 的方向,读 GPIO 的电平(输入的时候),写 GPIO 的电平(输出的时候),GPIO 作为外部中断输入,等等。
gpio_chip 的抽象,其实是对 GPIO 一组 Bank 的抽象,通常在硬件上,一个芯片对 IO 口来说,分为了很多个 Bank,每个 Bank 分为了 N 组 GPIO。
比如:1 个 SoC 将 I/O 分为了 4 个 Bank:
Bank 1:GPIOA ~ GPIOB
Bank 2:GPIOC ~ GPIOD
Bank 3:GPIOE ~ GPIOF
Bank 4:GPIOG ~ GPIOH
然鹅,每个 Bank 都有 N 组寄存器来表示 GPIO 的操作,比如:
Bank 1 中,针对 GPIO A:
GPIOA_CFG 来表示对 GPIO A 的配置
GPIOA_PULL 来表示对 GPIO A 的上下拉的配置
GPIOA_DIR 来表示对 GPIO A 配置成为输入或者输出
GPIOA_DATA 来表示 GPIO A 设置为输出的时候设置为高低或者输入的时候读高低
当然,Bank 1 中 针对 GPIO B,也是一样的操作:
GPIOB_CFG 来表示对 GPIO B 的配置
GPIOB_PULL 来表示对 GPIO B 的上下拉的配置
GPIOB_DIR 来表示对 GPIO B 配置成为输入或者输出
GPIOB_DATA 来表示 GPIO B 设置为输出的时候设置为高低或者输入的时候读高低
上面说的是一个 Bank 的情况,那么芯片有好几个 Bank,所以它们都是类似的,这里不在赘述。
所以整体结构是如下所示(这里只是打个比方,有的芯片 Bank 很多,寄存器也很多):
Linux Driver Gpiolib 对他们的抽象,使用 gpio_chip 对应了一组 Bank 描述,比如 Bank ·1,用一个 gpio_chip 来抽象:
那么多个 Bank ,就用指针,或者数组来表示咯。当然这里可能说得有点不准确,gpio_chip 只是抽象了一组 Bank 的统一的接口而已。
那么对于一颗芯片底层来说,需要根据芯片手册 Datasheet,来实现这些结构的接口。
2.2 gpio_desc结构
既然系统分为多个 Bank,每个 Bank 又由几组组成,那么每个 GPIO 实体就由一个 gpio_desc 来描述:
struct gpio_desc {
struct gpio_device *gdev;
unsigned long flags;
/* flag symbols are bit numbers */
#define FLAG_REQUESTED 0
#define FLAG_IS_OUT 1
#define FLAG_EXPORT 2 /* protected by sysfs_lock */
#define FLAG_SYSFS 3 /* exported via /sys/class/gpio/control */
#define FLAG_ACTIVE_LOW 6 /* value has active low */
#define FLAG_OPEN_DRAIN 7 /* Gpio is open drain type */
#define FLAG_OPEN_SOURCE 8 /* Gpio is open source type */
#define FLAG_USED_AS_IRQ 9 /* GPIO is connected to an IRQ */
#define FLAG_IRQ_IS_ENABLED 10 /* GPIO is connected to an enabled IRQ */
#define FLAG_IS_HOGGED 11 /* GPIO is hogged */
#define FLAG_TRANSITORY 12 /* GPIO may lose value in sleep or reset */
#define FLAG_PULL_UP 13 /* GPIO has pull up enabled */
#define FLAG_PULL_DOWN 14 /* GPIO has pull down enabled */
#define FLAG_BIAS_DISABLE 15 /* GPIO has pull disabled */
#define FLAG_EDGE_RISING 16 /* GPIO CDEV detects rising edge events */
#define FLAG_EDGE_FALLING 17 /* GPIO CDEV detects falling edge events */
/* Connection label */
const char *label;
/* Name of the GPIO */
const char *name;
#ifdef CONFIG_OF_DYNAMIC
struct device_node *hog;
#endif
#ifdef CONFIG_GPIO_CDEV
/* debounce period in microseconds */
unsigned int debounce_period_us;
#endif
};
这个结构比较简单,可以看到,他包含了一个 gpio_device 的结构和 flag,以及 lable 和 name;
gdev 指针指向了这个 gpio_desc 所属的 gpio_device(马上描述),flag 代表了这个 GPIO 的属性状态;
看起来 gpio_chip 和 gpio_desc 应该是包含关系,但是 Kernel 中并没有直接将其两个结构联系上,而是通过另外一个结构将其联系在一起,这个结构就是 gpio_device。
2.3 gpio_device结构
gpio_device 应该算是大内总管了(最新的内核有,Linux 3 版本的内核没有这个),如果说 gpio_chip 是对一个 Bank 的 GPIO 的硬件的具体抽象的话,那么 gpio_device 就是软件层面上对一个 Bank 的 GPIO 进行管理的单元,它的数据结构是:
struct gpio_device {
int id;
struct device dev;
struct cdev chrdev;
struct device *mockdev;
struct module *owner;
struct gpio_chip *chip;
struct gpio_desc *descs;
int base;
u16 ngpio;
const char *label;
void *data;
struct list_head list;
struct blocking_notifier_head notifier;
#ifdef CONFIG_PINCTRL
/*
* If CONFIG_PINCTRL is enabled, then gpio controllers can optionally
* describe the actual pin range which they serve in an SoC. This
* information would be used by pinctrl subsystem to configure
* corresponding pins for gpio usage.
*/
struct list_head pin_ranges;
#endif
};
在这个 gpio_device 结构中,包含了 gpio_chip(对接芯片的操作集),gpio_desc(一些 GPIO 的描述);这个结构贯穿了整个 Gpiolib,因为 gpio_device 代表的是一个 Bank,一般的 GPIO 有多个 Bank,所以 Kernel 中,对这 gpio_device 的组织是由一个 gpio_devices 的链表构成(此处是多个 device,所以后面加了 s),在 gpiolib.c:
LIST_HEAD(gpio_devices);
2.4 gpio_chip/gpio_desc/gpio_device 结构体之间的关系
3,Gpiolib对接芯片底层
先聊聊 Gpiolib 是怎么对接到底层实际的驱动的。在前面的 2.1 部分讲过,底层需要对接的,其实对接的部分只有那些通用的操作,其实也就是 gpio_chip 这个玩意,所以,对接底层的部分,主要关心的是这个结构体,并且对这个结构体进行赋值的过程。
在底层对接到 Gpiolib 的时候,主要是对 gpio_chip 进行实现,然后调用 gpiochip_add 的接口,向 Gpiolib 注册你的 GPIO 。
实现的过程,主要是根据芯片手册,实现对应的 GPIO 的操作,也就是说,把寄存器操作编程成为函数,对接到这个 gpio_chip 结构体上。
3.1 gpio_chip具体芯片操作函数的填充 - 一个gpio controller驱动gpio-pl061.c
代码路径:drivers/gpio/gpio-pl061.c
寄存器手册:http://access.ee.ntu.edu.tw/course/SOC%E5%AF%A6%E9%A9%97%E6%95%99%E6%9D%90/Version%203/Lab05_External%20IO%20Control/Doc/Ref/ddi0190_gpio_trm.pdf
pl061是通过AMBA总线连接在SOC上的片上gpio controller,arm架构的芯片经过授权之后可以直接使用。
部分寄存器描述:
suspend/resume操作:
#ifdef CONFIG_PM
//suspend函数中保存当前所有gpio pin寄存器状态
static int pl061_suspend(struct device *dev)
{
struct pl061 *pl061 = dev_get_drvdata(dev);
int offset;
pl061->csave_regs.gpio_data = 0;
pl061->csave_regs.gpio_dir = readb(pl061->base + GPIODIR);
pl061->csave_regs.gpio_is = readb(pl061->base + GPIOIS);
pl061->csave_regs.gpio_ibe = readb(pl061->base + GPIOIBE);
pl061->csave_regs.gpio_iev = readb(pl061->base + GPIOIEV);
pl061->csave_regs.gpio_ie = readb(pl061->base + GPIOIE);
for (offset = 0; offset < PL061_GPIO_NR; offset++) {
if (pl061->csave_regs.gpio_dir & (BIT(offset)))
pl061->csave_regs.gpio_data |=
pl061_get_value(&pl061->gc, offset) << offset;
}
return 0;
}
//resume函数中将gpio pin的寄存器状态恢复
static int pl061_resume(struct device *dev)
{
struct pl061 *pl061 = dev_get_drvdata(dev);
int offset;
for (offset = 0; offset < PL061_GPIO_NR; offset++) {
if (pl061->csave_regs.gpio_dir & (BIT(offset)))
pl061_direction_output(&pl061->gc, offset,
pl061->csave_regs.gpio_data &
(BIT(offset)));
else
pl061_direction_input(&pl061->gc, offset);
}
writeb(pl061->csave_regs.gpio_is, pl061->base + GPIOIS);
writeb(pl061->csave_regs.gpio_ibe, pl061->base + GPIOIBE);
writeb(pl061->csave_regs.gpio_iev, pl061->base + GPIOIEV);
writeb(pl061->csave_regs.gpio_ie, pl061->base + GPIOIE);
return 0;
}
probe函数流程:
static int pl061_probe(struct amba_device *adev, const struct amba_id *id)
{
struct device *dev = &adev->dev;
struct pl061 *pl061;
struct gpio_irq_chip *girq;
int ret, irq;
pl061 = devm_kzalloc(dev, sizeof(*pl061), GFP_KERNEL);
if (pl061 == NULL)
return -ENOMEM;
pl061->base = devm_ioremap_resource(dev, &adev->res);
if (IS_ERR(pl061->base))
return PTR_ERR(pl061->base);
//填充gpio_chip中的回调函数
raw_spin_lock_init(&pl061->lock);
pl061->gc.request = gpiochip_generic_request;
pl061->gc.free = gpiochip_generic_free;
pl061->gc.base = -1;
pl061->gc.get_direction = pl061_get_direction;
pl061->gc.direction_input = pl061_direction_input;
pl061->gc.direction_output = pl061_direction_output;
pl061->gc.get = pl061_get_value;
pl061->gc.set = pl061_set_value;
pl061->gc.ngpio = PL061_GPIO_NR; //8
pl061->gc.label = dev_name(dev);
pl061->gc.parent = dev;
pl061->gc.owner = THIS_MODULE;
/*
* irq_chip support
*/
pl061->irq_chip.name = dev_name(dev);
pl061->irq_chip.irq_ack = pl061_irq_ack;
pl061->irq_chip.irq_mask = pl061_irq_mask;
pl061->irq_chip.irq_unmask = pl061_irq_unmask;
pl061->irq_chip.irq_set_type = pl061_irq_type;
pl061->irq_chip.irq_set_wake = pl061_irq_set_wake;
writeb(0, pl061->base + GPIOIE); /* disable irqs */
irq = adev->irq[0];
if (!irq)
dev_warn(&adev->dev, "IRQ support disabled\n");
pl061->parent_irq = irq;
girq = &pl061->gc.irq;
girq->chip = &pl061->irq_chip;
girq->parent_handler = pl061_irq_handler;
girq->num_parents = 1;
girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->parents[0] = irq;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
//注册gpio资源
ret = devm_gpiochip_add_data(dev, &pl061->gc, pl061);
if (ret)
return ret;
amba_set_drvdata(adev, pl061);
dev_info(dev, "PL061 GPIO chip registered\n");
return 0;
}
几个gpio_chip函数的实现 - pl061_get_direction
static int pl061_get_direction(struct gpio_chip *gc, unsigned offset)
{
//per-instance data assigned by the driver, return gc->gpiodev->data
struct pl061 *pl061 = gpiochip_get_data(gc);
//读取GPIODIR寄存器判断是输入或者输出并返回结果
if (readb(pl061->base + GPIODIR) & BIT(offset))
return GPIO_LINE_DIRECTION_OUT;
return GPIO_LINE_DIRECTION_IN;
}
几个gpio_chip函数的实现 -pl061_set_value
static void pl061_set_value(struct gpio_chip *gc, unsigned offset, int value)
{
struct pl061 *pl061 = gpiochip_get_data(gc);
//设置GPIODATA寄存器
writeb(!!value << offset, pl061->base + (BIT(offset + 2)));
}
3.2 gpiochip_add_data_with_key
1)
int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data,
struct lock_class_key *lock_key,
struct lock_class_key *request_key)
{
struct fwnode_handle *fwnode = gc->parent ? dev_fwnode(gc->parent) : NULL;
unsigned long flags;
int ret = 0;
unsigned i;
int base = gc->base;
struct gpio_device *gdev;
bool block_gpio_read = false;
/*
* First: allocate and populate the internal stat container, and
* set up the struct device.
*/
gdev = kzalloc(sizeof(*gdev), GFP_KERNEL);
if (!gdev)
return -ENOMEM;
gdev->dev.bus = &gpio_bus_type;
gdev->chip = gc;
gc->gpiodev = gdev;
if (gc->parent) {
gdev->dev.parent = gc->parent;
gdev->dev.of_node = gc->parent->of_node;
}
of_gpio_dev_init(gc, gdev);
/*
* Assign fwnode depending on the result of the previous calls,
* if none of them succeed, assign it to the parent's one.
*/
gdev->dev.fwnode = dev_fwnode(&gdev->dev) ?: fwnode;
//给chip分配唯一的ID
gdev->id = ida_alloc(&gpio_ida, GFP_KERNEL);
if (gdev->id < 0) {
ret = gdev->id;
goto err_free_gdev;
}
ret = dev_set_name(&gdev->dev, GPIOCHIP_NAME "%d", gdev->id);
if (ret)
goto err_free_ida;
device_initialize(&gdev->dev);
if (gc->parent && gc->parent->driver)
gdev->owner = gc->parent->driver->owner;
else if (gc->owner)
/* TODO: remove chip->owner */
gdev->owner = gc->owner;
else
gdev->owner = THIS_MODULE;
因为传入的结构是 gpio_chip,他代表了是一个 Bank,但是并没有 gpio_device 的结构,所以,在这个函数中,首先分配一个 gpio_device 的结构,并将其结构体成员的 chip ,等等进行赋值,建立起相关的结构联系。
2)
gdev->descs = kcalloc(gc->ngpio, sizeof(gdev->descs[0]), GFP_KERNEL);
if (!gdev->descs) {
ret = -ENOMEM;
goto err_free_dev_name;
}
if (gc->ngpio == 0) {
chip_err(gc, "tried to insert a GPIO chip with zero lines\n");
ret = -EINVAL;
goto err_free_descs;
}
if (gc->ngpio > FASTPATH_NGPIO)
chip_warn(gc, "line cnt %u is greater than fast path cnt %u\n",
gc->ngpio, FASTPATH_NGPIO);
gdev->label = kstrdup_const(gc->label ?: "unknown", GFP_KERNEL);
if (!gdev->label) {
ret = -ENOMEM;
goto err_free_descs;
}
gdev->ngpio = gc->ngpio;
gdev->data = data;
由于 1 个 Bank不仅仅只有一个 GPIO,所以 gpio_chip->ngpio 的结构表示了这个 Bank 一共的 GPIO 个数,每一个 GPIO 使用一个 gpio_desc 表示,所以,这里分配了 ngpio 个 descs;
3)
spin_lock_irqsave(&gpio_lock, flags);
/*
* TODO: this allocates a Linux GPIO number base in the global
* GPIO numberspace for this chip. In the long run we want to
* get *rid* of this numberspace and use only descriptors, but
* it may be a pipe dream. It will not happen before we get rid
* of the sysfs interface anyways.
*/
if (base < 0) {
base = gpiochip_find_base(gc->ngpio);
if (base < 0) {
ret = base;
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
/*
* TODO: it should not be necessary to reflect the assigned
* base outside of the GPIO subsystem. Go over drivers and
* see if anyone makes use of this, else drop this and assign
* a poison instead.
*/
gc->base = base;
}
gdev->base = base;
ret = gpiodev_add_to_list(gdev);
if (ret) {
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
for (i = 0; i < gc->ngpio; i++)
gdev->descs[i].gdev = gdev;
spin_unlock_irqrestore(&gpio_lock, flags);
BLOCKING_INIT_NOTIFIER_HEAD(&gdev->notifier);
#ifdef CONFIG_PINCTRL
INIT_LIST_HEAD(&gdev->pin_ranges);
#endif
if (gc->names)
ret = gpiochip_set_desc_names(gc);
else
ret = devprop_gpiochip_set_names(gc);
if (ret)
goto err_remove_from_list;
ret = gpiochip_alloc_valid_mask(gc);
if (ret)
goto err_remove_from_list;
ret = of_gpiochip_add(gc);
if (ret)
goto err_free_gpiochip_mask;
ret = gpiochip_init_valid_mask(gc);
if (ret)
goto err_remove_of_chip;
trace_android_vh_gpio_block_read(gdev, &block_gpio_read);
if (!block_gpio_read) {
for (i = 0; i < gc->ngpio; i++) {
struct gpio_desc *desc = &gdev->descs[i];
if (gc->get_direction && gpiochip_line_is_valid(gc, i)) {
assign_bit(FLAG_IS_OUT,
&desc->flags, !gc->get_direction(gc, i));
} else {
assign_bit(FLAG_IS_OUT,
&desc->flags, !gc->direction_input);
}
}
}
ret = gpiochip_add_pin_ranges(gc);
if (ret)
goto err_remove_of_chip;
acpi_gpiochip_add(gc);
machine_gpiochip_add(gc);
ret = gpiochip_irqchip_init_valid_mask(gc);
if (ret)
goto err_remove_acpi_chip;
ret = gpiochip_irqchip_init_hw(gc);
if (ret)
goto err_remove_acpi_chip;
ret = gpiochip_add_irqchip(gc, lock_key, request_key);
if (ret)
goto err_remove_irqchip_mask;
/*
* By first adding the chardev, and then adding the device,
* we get a device node entry in sysfs under
* /sys/bus/gpio/devices/gpiochipN/dev that can be used for
* coldplug of device nodes and other udev business.
* We can do this only if gpiolib has been initialized.
* Otherwise, defer until later.
*/
if (gpiolib_initialized) {
ret = gpiochip_setup_dev(gdev);
if (ret)
goto err_remove_irqchip;
}
return 0;
err_remove_irqchip:
gpiochip_irqchip_remove(gc);
err_remove_irqchip_mask:
gpiochip_irqchip_free_valid_mask(gc);
err_remove_acpi_chip:
acpi_gpiochip_remove(gc);
err_remove_of_chip:
gpiochip_free_hogs(gc);
of_gpiochip_remove(gc);
err_free_gpiochip_mask:
gpiochip_remove_pin_ranges(gc);
gpiochip_free_valid_mask(gc);
err_remove_from_list:
spin_lock_irqsave(&gpio_lock, flags);
list_del(&gdev->list);
spin_unlock_irqrestore(&gpio_lock, flags);
err_free_label:
kfree_const(gdev->label);
err_free_descs:
kfree(gdev->descs);
err_free_dev_name:
kfree(dev_name(&gdev->dev));
err_free_ida:
ida_free(&gpio_ida, gdev->id);
err_free_gdev:
/* failures here can mean systems won't boot... */
pr_err("%s: GPIOs %d..%d (%s) failed to register, %d\n", __func__,
gdev->base, gdev->base + gdev->ngpio - 1,
gc->label ? : "generic", ret);
kfree(gdev);
return ret;
}
EXPORT_SYMBOL_GPL(gpiochip_add_data_with_key);
base 代表了每个 Bank 的编号,将其赋值;然后通过 gpiodev_add_to_list(gdev) 将这个 gdev 挂到全局的 gpio_devices :
/*
* Add a new chip to the global chips list, keeping the list of chips sorted
* by range(means [base, base + ngpio - 1]) order.
*
* Return -EBUSY if the new chip overlaps with some other chip's integer
* space.
*/
static int gpiodev_add_to_list(struct gpio_device *gdev)
{
struct gpio_device *prev, *next;
if (list_empty(&gpio_devices)) {
/* initial entry in list */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
next = list_entry(gpio_devices.next, struct gpio_device, list);
if (gdev->base + gdev->ngpio <= next->base) {
/* add before first entry */
list_add(&gdev->list, &gpio_devices);
return 0;
}
prev = list_entry(gpio_devices.prev, struct gpio_device, list);
if (prev->base + prev->ngpio <= gdev->base) {
/* add behind last entry */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
list_for_each_entry_safe(prev, next, &gpio_devices, list) {
/* at the end of the list */
if (&next->list == &gpio_devices)
break;
/* add between prev and next */
if (prev->base + prev->ngpio <= gdev->base
&& gdev->base + gdev->ngpio <= next->base) {
list_add(&gdev->list, &prev->list);
return 0;
}
}
dev_err(&gdev->dev, "GPIO integer space overlap, cannot add chip\n");
return -EBUSY;
}
接着就是设置一些 name 字段,配置中断之类的,初始化每个 desc[] 结构的 flags,最后调用:
if (gpiolib_initialized) {
ret = gpiochip_setup_dev(gdev);
if (ret)
goto err_remove_irqchip;
}
然后,不出意外的话,返回 0;
这里说一下 gpiochip_setup_dev 调用,这个是在 Gpiolib init 的时候调用 gpiochip_setup_devs:
static int __init gpiolib_dev_init(void)
{
int ret;
/* Register GPIO sysfs bus */
ret = bus_register(&gpio_bus_type);
if (ret < 0) {
pr_err("gpiolib: could not register GPIO bus type\n");
return ret;
}
ret = driver_register(&gpio_stub_drv);
if (ret < 0) {
pr_err("gpiolib: could not register GPIO stub driver\n");
bus_unregister(&gpio_bus_type);
return ret;
}
ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, GPIOCHIP_NAME);
if (ret < 0) {
pr_err("gpiolib: failed to allocate char dev region\n");
driver_unregister(&gpio_stub_drv);
bus_unregister(&gpio_bus_type);
return ret;
}
gpiolib_initialized = true;
gpiochip_setup_devs();
#if IS_ENABLED(CONFIG_OF_DYNAMIC) && IS_ENABLED(CONFIG_OF_GPIO)
WARN_ON(of_reconfig_notifier_register(&gpio_of_notifier));
#endif /* CONFIG_OF_DYNAMIC && CONFIG_OF_GPIO */
return ret;
}
core_initcall(gpiolib_dev_init);
而这个 gpiochip_setup_devs 对每一个 gpio_devicecs 节点调用:gpiochip_setup_dev:
static void gpiochip_setup_devs(void)
{
struct gpio_device *gdev;
int ret;
list_for_each_entry(gdev, &gpio_devices, list) {
ret = gpiochip_setup_dev(gdev);
if (ret)
dev_err(&gdev->dev,
"Failed to initialize gpio device (%d)\n", ret);
}
}
最后到:
static int gpiochip_setup_dev(struct gpio_device *gdev)
{
int ret;
ret = gcdev_register(gdev, gpio_devt);
if (ret)
return ret;
ret = gpiochip_sysfs_register(gdev);
if (ret)
goto err_remove_device;
/* From this point, the .release() function cleans up gpio_device */
gdev->dev.release = gpiodevice_release;
dev_dbg(&gdev->dev, "registered GPIOs %d to %d on %s\n", gdev->base,
gdev->base + gdev->ngpio - 1, gdev->chip->label ? : "generic");
return 0;
err_remove_device:
gcdev_unregister(gdev);
return ret;
}
其实就是注册了字符设备,并且添加到了 sysfs;
debug logs:
char dev节点:/sys/bus/gpio/devices
ls -l /sys/bus/gpio/devices
total 0
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip0 -> ../../../devices/platform/soc/f000000.pinctrl/gpiochip0
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip1 -> ../../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-00/c42d000.qcom,spmi:qcom,pmk8350@0:pinctrl@b000/gpiochip1
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip2 -> ../../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-02/c42d000.qcom,spmi:qcom,pm8350c@2:pinctrl@8800/gpiochip2
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip3 -> ../../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-01/c42d000.qcom,spmi:qcom,pm7325@1:pinctrl@8800/gpiochip3
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip4 -> ../../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-03/c42d000.qcom,spmi:qcom,pm8350b@3:pinctrl@8800/gpiochip4
lrwxrwxrwx 1 root root 0 2023-09-21 06:52 gpiochip5 -> ../../../devices/platform/soc/soc:spf_core_platform/soc:spf_core_platform:lpi_pinctrl@3440000/gpiochip5
sysfs节点 /sys/class/gpio
ls -l /sys/class/gpio/
total 0
--w------- 1 root root 4096 2023-09-21 06:53 export
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip287 -> ../../devices/platform/soc/soc:spf_core_platform/soc:spf_core_platform:lpi_pinctrl@3440000/gpio/gpiochip287
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip310 -> ../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-03/c42d000.qcom,spmi:qcom,pm8350b@3:pinctrl@8800/gpio/gpiochip310
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip318 -> ../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-01/c42d000.qcom,spmi:qcom,pm7325@1:pinctrl@8800/gpio/gpiochip318
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip328 -> ../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-02/c42d000.qcom,spmi:qcom,pm8350c@2:pinctrl@8800/gpio/gpiochip328
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip337 -> ../../devices/platform/soc/c42d000.qcom,spmi/spmi-0/0-00/c42d000.qcom,spmi:qcom,pmk8350@0:pinctrl@b000/gpio/gpiochip337
lrwxrwxrwx 1 root root 0 2023-09-21 06:53 gpiochip341 -> ../../devices/platform/soc/f000000.pinctrl/gpio/gpiochip341
--w------- 1 root root 4096 2023-09-21 06:53 unexport
dev_dbg(&gdev->dev, "registered GPIOs %d to %d on %s\n", gdev->base, gdev->base + gdev->ngpio - 1, gdev->chip->label ? : "generic");
05-23 16:18:33.460 1 1 E gpiochip0: (f000000.pinctrl): william_gpio added GPIO chardev (254:0)
05-23 16:18:33.460 1 1 E gpiochip0: william_gpio registered GPIOs 341 to 511 on f000000.pinctrl
05-23 16:18:35.347 357 357 E gpiochip1: (c42d000.qcom,spmi:qcom,pmk8350@0:pinctrl@b000): william_gpio added GPIO chardev (254:1)
05-23 16:18:35.347 357 357 E gpiochip1: william_gpio registered GPIOs 337 to 340 on c42d000.qcom,spmi:qcom,pmk8350@0:pinctrl@b000
05-23 16:18:35.351 357 357 E gpiochip2: (c42d000.qcom,spmi:qcom,pm8350c@2:pinctrl@8800): william_gpio added GPIO chardev (254:2)
05-23 16:18:35.351 357 357 E gpiochip2: william_gpio registered GPIOs 328 to 336 on c42d000.qcom,spmi:qcom,pm8350c@2:pinctrl@8800
05-23 16:18:35.361 357 357 E gpiochip3: (c42d000.qcom,spmi:qcom,pm7325@1:pinctrl@8800): william_gpio added GPIO chardev (254:3)
05-23 16:18:35.361 357 357 E gpiochip3: william_gpio registered GPIOs 318 to 327 on c42d000.qcom,spmi:qcom,pm7325@1:pinctrl@8800
05-23 16:18:35.362 357 357 E gpiochip4: (c42d000.qcom,spmi:qcom,pm8350b@3:pinctrl@8800): william_gpio added GPIO chardev (254:4)
05-23 16:18:35.362 357 357 E gpiochip4: william_gpio registered GPIOs 310 to 317 on c42d000.qcom,spmi:qcom,pm8350b@3:pinctrl@8800
09-21 01:52:25.519 758 758 E gpiochip5: (soc:spf_core_platform:lpi_pinctrl@3440000): william_gpio added GPIO chardev (254:5)
09-21 01:52:25.519 758 758 E gpiochip5: william_gpio registered GPIOs 287 to 309 on soc:spf_core_platform:lpi_pinctrl@3440000
chip base ngpio gdev->chip->label
gpiochip0 341 170 f000000.pinctrl
gpiochip1 337 3 pmk8350@0:pinctrl@b000
gpiochip2 328 8 pm8350c@2:pinctrl@8800
gpiochip3 318 9 pm7325@1:pinctrl@8800
gpiochip4 310 7 pm8350b@3:pinctrl@8800
gpiochip5 287 22 lpi_pinctrl@3440000
个人理解,因为不知道这个 init 和我们的对接底层的驱动的 init 谁先执行到,所以用了一个变量 gpiolib_initialized 来表示当前的 Gpiolib 是不是已经完成了相关的字符设备的注册,如果是 Gpiolib 先去 init 的话,那么 gpiolib_initialized ture,芯片对接底层的部分错过 gpio_chip setup 的机会,所以需要重新调用这个 gpiochip_setup_dev 接口,反之 OK;
到这里,对接底层驱动的部分基本上 OK 了,小伙伴们需要按照自己芯片的 Specific 去做自己的 gpio_chip 结构并最终通过 gpiochip_add_data 添加到 Gpiolib 子系统中;
还有一点需要注意到的是,小伙伴们需要自行定义一些结构,来获得并表示自己 Bank 的虚拟地址等等,这样才能操作到实际的硬件寄存器;
4,gpiolib 向上提供的操作接口
两种不同的gpio框架:
* descriptor-based interface: 基于描述符的接口, 新框架, 官方推荐;
* legacy integer-based interface: 基于整数的接口;
4.1 基于描述符的gpio在dts中使用
参考:
Documentation/gpio/board.txt
#include <linux/gpio/consumer.h>
foo_device {
compatible = "acme,foo";
...
led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */
<&gpio 16 GPIO_ACTIVE_HIGH>, /* green */
<&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */
power-gpio = <&gpio 18 GPIO_ACTIVE_LOW>;
};
struct gpio_desc *red, *green, *blue, *power;
red = gpiod_get_index(dev, "led", 0);
green = gpiod_get_index(dev, "led", 1);
blue = gpiod_get_index(dev, "led", 2);
power = gpiod_get(dev, "power");
gpiod_direction_output(red, 1);
gpiod_direction_output(green, 1);
gpiod_direction_output(blue, 1);
gpiod_direction_output(power, 1);
gpiod_put(red); //释放gpio口;
dts中gpio label的写法: name-gpios, 其中name是gpiod_get*()函数里的第二个参数;
The led GPIOs will be active-high, while the power GPIO will be active-low;
gpiod_is_active_low(power); 为true;
4.2 基于整数的gpio在dts中使用
device_node {
...
gpio_name = <&tlmm 99 0>;
...
}
int gpio_99 = of_get_named_gpio_flags(dev->of_node, "gpio_name", 0, NULL);
gpio_request(gpio_99, "gpio_name"); //通过gpio号申请gpio
gpio_direction_output(gpio_99, 1); //设置gpio_99输出,初始值为1
gpio_set_value(gpio_99, 0); //设置gpio_99值为0
gpio_free(gpio_99);
gpio_get_value(gpio_99, 0); //获取gpio_99的值
这种方法目前最常用;
gpio_request()流程:
gpio_request()
*desc = gpio_to_desc(gpio);
gpiod_request(desc, label);
gpiod_request_commit(desc, label);
offset = gpio_chip_hwgpio(desc);
gc->request(gc, offset);
pl061->gc.request = gpiochip_generic_request;
pinctrl_gpio_request(gc->gpiodev->base + offset); //drivers/pinctrl/core.c
pin = gpio_to_pin(range, gpio);
pinmux_request_gpio(pctldev, range, pin, gpio);
pin_request(pctldev, pin, owner, range);
ops->gpio_request_enable(pctldev, gpio_range, pin);
可以看到GPIO子系统是通过pinctrl子系统来实现的。
gpio_direction_output()流程:
gpio_direction_output()
gpiod_direction_output_raw(gpio_to_desc(gpio), value);
gpiod_direction_output_raw_commit(desc, value);
*gc = desc->gdev->chip;
gc->direction_output(gc, gpio_chip_hwgpio(desc), val);
pl061->gc.direction_output = pl061_direction_output;
4.3 Device-managed variants函数
代码路径:drivers/gpio/gpiolib-devres.c
struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id,
enum gpiod_flags flags)
struct gpio_desc *devm_gpiod_get_index(struct device *dev,
const char *con_id,
unsigned int idx,
enum gpiod_flags flags)
struct gpio_desc *devm_gpiod_get_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)
struct gpio_desc * devm_gpiod_get_index_optional(struct device *dev,
const char *con_id,
unsigned int index,
enum gpiod_flags flags)
释放gpio:
void gpiod_put(struct gpio_desc *desc);
void devm_gpiod_put(struct device *dev, struct gpio_desc *desc);
4.4 新旧框架的相互转换
gpio与gpio_desc结构体的相互转换:
static struct gpio_desc gpio_desc[ARCH_NR_GPIOS]; //gpiolib.c
gpio_to_desc(unsigned gpio)
&gpio_desc[gpio] //这里的gpio_desc是同名结构体的数组;
int desc_to_gpio(const struct gpio_desc *desc) //gpiolib.c
return desc - &gpio_desc[0];
参考链接:
Linux GPIO 驱动 (gpiolib)_devm_gpiochip_add_data-CSDN博客
linux gpio学习笔记(gpiolib)_devm_gpiod_get_verdicty的博客-CSDN博客