竞赛 深度学习 机器视觉 人脸识别系统 - opencv python

news2024/11/16 1:20:23

文章目录

  • 0 前言
  • 1 机器学习-人脸识别过程
    • 人脸检测
    • 人脸对其
    • 人脸特征向量化
    • 人脸识别
  • 2 深度学习-人脸识别过程
    • 人脸检测
    • 人脸识别
        • Metric Larning
  • 3 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import os
 
def loadImageSet(add):
    FaceMat = mat(zeros((15,98*116)))
    j =0
    for i in os.listdir(add):
        if i.split('.')[1] == 'normal':
            try:
                img = cv2.imread(add+i,0)
            except:
                print 'load %s failed'%i
            FaceMat[j,:] = mat(img).flatten()
            j += 1
    return FaceMat
 
def ReconginitionVector(selecthr = 0.8):
    # step1: load the face image data ,get the matrix consists of all image
    FaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T
    # step2: average the FaceMat
    avgImg = mean(FaceMat,1)
    # step3: calculate the difference of avgimg and all image data(FaceMat)
    diffTrain = FaceMat-avgImg
    #step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)
    eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))
    eigSortIndex = argsort(-eigvals)
    for i in xrange(shape(FaceMat)[1]):
        if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:
            eigSortIndex = eigSortIndex[:i]
            break
    covVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix
    # avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵
    return avgImg,covVects,diffTrain
 
def judgeFace(judgeImg,FaceVector,avgImg,diffTrain):
    diff = judgeImg.T - avgImg
    weiVec = FaceVector.T* diff
    res = 0
    resVal = inf
    for i in range(15):
        TrainVec = FaceVector.T*diffTrain[:,i]
        if  (array(weiVec-TrainVec)**2).sum() < resVal:
            res =  i
            resVal = (array(weiVec-TrainVec)**2).sum()
    return res+1
 
if __name__ == '__main__':
 
    avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)
    nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']
    characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']
 
    for c in characteristic:
 
        count = 0
        for i in range(len(nameList)):
 
            # 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率
            loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'
            judgeImg = cv2.imread(loadname,0)
            if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):
                count += 1
        print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:



    from __future__ import print_function
    
    from time import time
    import logging
    import matplotlib.pyplot as plt
    
    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.grid_search import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC


    print(__doc__)
    
    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


    ###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays
    
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
    
    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape
    
    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]
    
    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]
    
    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    ###############################################################################
    # Split into a training set and a test set using a stratified k fold
    
    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)


    ###############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 80
    
    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))
    
    eigenfaces = pca.components_.reshape((n_components, h, w))
    
    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))

    ###############################################################################
    # Train a SVM classification model
    
    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)
    
    print(clf.best_estimator_.n_support_)
    ###############################################################################
    # Quantitative evaluation of the model quality on the test set
    
    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))
    
    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


    ###############################################################################
    # Qualitative evaluation of the predictions using matplotlib
    
    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            # Show the feature face
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())

    # plot the result of the prediction on a portion of the test set
    
    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)
    
    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]
    
    plot_gallery(X_test, prediction_titles, h, w)
    
    # plot the gallery of the most significative eigenfaces
    
    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)
    
    plt.show()



在这里插入图片描述

2 深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1084879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM第三讲:JVM 基础-字节码的增强技术详解

JVM 基础-字节码的增强技术详解 本文是JVM第三讲&#xff0c;JVM 基础-字节码的增强技术。在上文中&#xff0c;着重介绍了字节码的结构&#xff0c;这为我们了解字节码增强技术的实现打下了基础。字节码增强技术就是一类对现有字节码进行修改或者动态生成全新字节码文件的技术…

CV计算机视觉每日开源代码Paper with code速览-2023.10.12

精华置顶 墙裂推荐&#xff01;小白如何1个月系统学习CV核心知识&#xff1a;链接 点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【目标检测】A Novel Voronoi-based Convolutional Neura…

二叉树题目:二叉树寻路

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;二叉树寻路 出处&#xff1a;1104. 二叉树寻路 难度 5 级 题目描述 要求 在一个无限的二叉树上&#xff0c;每个结点都有两个子结点&#xff0c;结…

logicFlow 流程图编辑工具使用及开源地址

一、工具介绍 LogicFlow 是一款流程图编辑框架&#xff0c;提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow 支持前端研发自定义开发各种逻辑编排场景&#xff0c;如流程图、ER 图、BPMN 流程等。在工作审批配置、机器人逻辑编排、无…

玩转Linux Shell Terminal Tmux

一、Shell编程☘️ 1. Shell指令快捷操作 1. echo # 系统指令 $ echo $(pwd) # 对于系统自带的pwd&#xff0c;此处不能写echo $pwd# 自定义变量 $ foo$(pwd) $ echo $foo # 不同于pwd&#xff0c;对于自定义的foo&#xff0c;不能用$(foo)2. !! # 假设你先执行了以下原本…

JOSEF约瑟 矿用一般型选择性漏电继电器 LXY2-660 Φ45 JKY1-660

系列型号&#xff1a; JY82A检漏继电器 JY82B检漏继电器 JY82-380/660检漏继电器 JY82-IV检漏继电器 JY82-2P检漏继电器 JY82-2/3检漏继电器 JJKY检漏继电器 JD型检漏继电器 JY82-IV;JY82J JY82-II;JY82-III JY82-1P;JY82-2PA;JY82-2PB JJB-380;JJB-380/660 JD-12…

Generics/泛型, ViewBuilder/视图构造器 的使用

1. Generics 泛型的定义及使用 1.1 创建使用泛型的实例 GenericsBootcamp.swift import SwiftUIstruct StringModel {let info: String?func removeInfo() -> StringModel{StringModel(info: nil)} }struct BoolModel {let info: Bool?func removeInfo() -> BoolModel…

解析Moonbeam的安全性、互操作性和市场竞争力

Moonbeam依托Polkadot Substrate框架构建&#xff0c;用Rust程序设计语言创建的智能合约区块链平台&#xff0c;在继承Polkadot安全性的基础上为项目提供以太坊虚拟机&#xff08;EVM&#xff09;的兼容性和原生的跨链互操作性优势。Moonbeam的EVM兼容性表示开发者无需学习Subs…

LeetCode-102-二叉树的层序遍历

题目描述&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 题目链接&#xff1a;LeetCode-102-二叉树的层序遍历 解题思路&#xff1a; 使用队列 先进先出的特点存储每次遍…

spring 通过有参构造方法注入

1.先写一个有参构造方法 2.给构造方法里面的属性 name 赋值 lisi 3.测试

[ROS2系列] ubuntu 20.04测试rtabmap 3D建图(二)

接上文我们继续 如果我们要在仿真环境中进行测试&#xff0c;需要将摄像头配置成功。 一、配置位置 sudo vim /opt/ros/foxy/share/turtlebot3_gazebo/models/turtlebot3_waffle/model.sdf 二、修改 <joint name"camera_rgb_optical_joint" type"fixed&…

【数据库】Sql Server数据迁移,处理自增字段赋值

给自己一个目标&#xff0c;然后坚持一段时间&#xff0c;总会有收获和感悟&#xff01; 在实际项目开发中&#xff0c;如果遇到高版本导入到低版本&#xff0c;或者低版本转高版本&#xff0c;那么就会出现版本不兼容无法导入&#xff0c;此时通过程序遍历创建表和添加数据方式…

CRMEB多商户商城系统阿里云集群部署教程

注意: 1.所有服务创建时地域一定要选择一致,这里我用的是杭州K区 2.文件/图片上传一定要用类似oss的云文件服务, 本文不做演示 一、 创建容器镜像服务&#xff0c;容器镜像服务(aliyun.com) ,个人版本就可以 先创建一个命名空间 然后创建一个镜像仓库 查看并记录镜像公网地址…

Flink之窗口聚合算子

1.窗口聚合算子 在Flink中窗口聚合算子主要分类两类 滚动聚合算子(增量聚合)全窗口聚合算子(全量聚合) 1.1 滚动聚合算子 滚动聚合算子一次只处理一条数据,通过算子中的累加器对聚合结果进行更新,当窗口触发时再从累加器中取结果数据,一般使用算子如下: aggregatemaxmaxBy…

Unity中Shader光照模型Phong

文章目录 前言一、Phong光照模型二、图示解释Phone光照模型1、由图可得&#xff0c;R 可以由 -L 加上 P 得出2、P等于2*M3、因为 N 和 L 均为单位向量&#xff0c;所以 M 的模可以由 N 和 L得出4、得到M的模后&#xff0c;乘以 单位向量N&#xff0c;得到M5、最后得出 P 和 R 前…

Prometheus-Prometheus安装及其配置

Prometheus-Prometheus安装及其配置 Prometheus安装下载解压 配置启动prometheus校验配置文件表达式浏览器 Prometheus安装 Prometheus的安装针对Linux的安装&#xff0c;其他的安装方式可以查看Prometheus官网 下载 sudo wget https://github.com/prometheus/prometheus/re…

四款数字办公工具大比拼,在线办公无压力

在线办公软件使企业、员工实现办公场所、距离的自由&#xff0c;尤其是近几年&#xff0c;受“口罩”的影响&#xff0c;远程办公软件的使用者也越来越多&#xff0c;无论是财务、行政、还是设计师&#xff0c;都开始追求好用的在线办公软件&#xff0c;作为办公软件发烧友&…

发送消息时序图

内窥镜消息队列发送消息原理 目的 有一个多线程的Java应用程序&#xff0c;使用消息队列来处理命令 时序图 startumlactor User participant "sendCmdWhiteBalance()" as Controller participant CommandConsumer participant MessageQueueUser -> Controller:…

​左手 Serverless,右手 AI,7 年躬身的古籍修复之路

作者&#xff1a;宋杰 “AI 可以把我们思维体系当中&#xff0c;过度专业化、过度细分的这些所谓的知识都替代掉&#xff0c;让我们集中精力去体验自己的生命。我挺幸运的&#xff0c;代码能够有 AI 辅助&#xff0c;也能够有 Serverless 解决我的运营成本问题。Serverless 它…

mybatis拦截器源码分析

mybatis拦截器源码分析 拦截器简介 mybatis Plugins 拦截器由于Mybatis对数据库访问与操作进行了深度的封装,让我们应用开发效率大大提高,但是灵活度很差拦截器的作用:深度定制Mybatis的开发抛出一个需求 :获取Mybatis在开发过程中执行的SQL语句(执行什么操作获取那条SQL语句…