“开启中文智能之旅:探秘超乎想象的 Llama2-Chinese 大模型世界”

news2025/1/19 23:10:18

“开启中文智能之旅:探秘超乎想象的 Llama2-Chinese 大模型世界”

1.国内Llama2最新下载地址

本仓库中的代码示例主要是基于Hugging Face版本参数进行调用,我们提供了脚本将Meta官网发布的模型参数转换为Hugging Face支持的格式,可以直接通过transformers库进行加载:参数格式转化

  • Llama2-7B官网版本:https://pan.xunlei.com/s/VN_kR2fwuJdG1F3CoF33rwpIA1?pwd=z9kf

  • Llama2-7B-Chat官网版本:https://pan.xunlei.com/s/VN_kQa1_HBvV-X9QVI6jV2kOA1?pwd=xmra

  • Llama2-13B官网版本:https://pan.xunlei.com/s/VN_izibaMDoptluWodzJw4cRA1?pwd=2qqb

  • Llama2-13B-Chat官网版本:https://pan.xunlei.com/s/VN_iyyponyapjIDLXJCNfqy7A1?pwd=t3xw

  • Llama2-7B Hugging Face版本:https://pan.xunlei.com/s/VN_t0dUikZqOwt-5DZWHuMvqA1?pwd=66ep

  • Llama2-7B-Chat Hugging Face版本:https://pan.xunlei.com/s/VN_oaV4BpKFgKLto4KgOhBcaA1?pwd=ufir

  • Llama2-13B Hugging Face版本:https://pan.xunlei.com/s/VN_yT_9G8xNOz0SDWQ7Mb_GZA1?pwd=yvgf

  • Llama2-13B-Chat Hugging Face版本:https://pan.xunlei.com/s/VN_yA-9G34NGL9B79b3OQZZGA1?pwd=xqrg

  • Llama2-70B-Chat Hugging Face版本:https://pan.xunlei.com/s/VNa_vCGzCy3h3N7oeFXs2W1hA1?pwd=uhxh#

  • CodeLlama-7b官网版本:https://pan.baidu.com/s/1cIPzdNywWLvQI7_2QanOEQ?pwd=zfwi

  • CodeLlama-7b-Python官网版本:https://pan.baidu.com/s/1liY8klGoDagYbpw-g-oFag?pwd=i952

  • CodeLlama-7b-Instruct官网版本:https://pan.baidu.com/s/108o9_DT2E_vfSGtOnDCQVw?pwd=zkt9

  • CodeLlama-13b官网版本:https://pan.baidu.com/s/1lLaeHv0XEBv0iiZzI1dpnw?pwd=qn99

  • CodeLlama-13b-Python官网版本:https://pan.baidu.com/s/1OLVfvZS_oqL3oqMKwsI87w?pwd=a78k

  • CodeLlama-13b-Instruct官网版本:https://pan.baidu.com/s/1HyxJl4w8wElgkZRh2ATrXQ?pwd=seg6

  • CodeLlama-34b官网版本:https://pan.baidu.com/s/1vEw0pFgIkctPUN4_5_6pIQ?pwd=q8eu

2.Atom大模型

原子大模型Atom由Llama中文社区和原子回声联合打造,在中文大模型评测榜单C-Eval中位居前十(8月21日评测提交时间)。

Atom系列模型包含Atom-7B和Atom-13B,基于Llama2做了中文能力的持续优化。Atom-7B和Atom-7B-Chat目前已完全开源,支持商用,可在Hugging Face仓库获取模型,详情见Atom-7B下载。Atom大模型针对中文做了以下优化:

  • 大规模的中文数据预训练

原子大模型Atom在Llama2的基础上,采用大规模的中文数据进行持续预训练,包含百科、书籍、博客、新闻、公告、小说、金融数据、法律数据、医疗数据、代码数据、专业论文数据、中文自然语言处理竞赛数据集等,详见📝 数据来源。

同时对庞大的数据进行了过滤、打分、去重,筛选出超过1T token的高质量中文数据,持续不断加入训练迭代中。

  • 更高效的中文词表
    为了提高中文文本处理的效率,我们针对Llama2模型的词表进行了深度优化。首先,我们基于数百G的中文文本,在该模型词表的基础上扩展词库至65,000个单词。经过测试,我们的改进使得中文编码/解码速度提高了约350%。此外,我们还扩大了中文字符集的覆盖范围,包括所有emoji符号😊。这使得生成带有表情符号的文章更加高效。

  • 自适应上下文扩展
    Atom大模型默认支持4K上下文,利用位置插值PI和Neural Tangent Kernel (NTK)方法,经过微调可以将上下文长度扩增到32K。

2.1 中文数据

我们通过以下数据来优化Llama2的中文能力:

类型描述
网络数据互联网上公开的网络数据,挑选出去重后的高质量中文数据,涉及到百科、书籍、博客、新闻、公告、小说等高质量长文本数据。
Wikipedia中文Wikipedia的数据
悟道中文悟道开源的200G数据
ClueClue开放的中文预训练数据,进行清洗后的高质量中文长文本数据
竞赛数据集近年来中文自然语言处理多任务竞赛数据集,约150个
MNBVCMNBVC 中清洗出来的部分数据集

2.2 模型部署

Meta在🤗Hugging Face上提供了所有模型的下载链接:https://huggingface.co/meta-llama

Llama中文社区的中文模型下载链接:https://huggingface.co/FlagAlpha

2.2.1模型下载

Meta官方Llama2模型

Llama2预训练模型包含7B、13B和70B三个版本。Llama2-Chat模型基于预训练模型进行了监督微调,具备更强的对话能力。

类别模型名称🤗模型加载名称下载地址
预训练Llama2-7Bmeta-llama/Llama-2-7b-hf模型下载
预训练Llama2-13Bmeta-llama/Llama-2-13b-hf模型下载
预训练Llama2-70Bmeta-llama/Llama-2-70b-hf模型下载
ChatLlama2-7B-Chatmeta-llama/Llama-2-7b-chat-hf模型下载
ChatLlama2-13B-Chatmeta-llama/Llama-2-13b-chat-hf模型下载
ChatLlama2-70B-Chatmeta-llama/Llama-2-70b-chat-hf模型下载
基于Llama2的中文微调模型

我们基于中文指令数据集对Llama2-Chat模型进行了微调,使得Llama2模型有着更强的中文对话能力。LoRA参数以及与基础模型合并的参数均已上传至Hugging Face,目前包含7B和13B的模型。

类别模型名称🤗模型加载名称基础模型版本下载地址
合并参数Llama2-Chinese-7b-ChatFlagAlpha/Llama2-Chinese-7b-Chatmeta-llama/Llama-2-7b-chat-hf模型下载
合并参数Llama2-Chinese-13b-ChatFlagAlpha/Llama2-Chinese-13b-Chatmeta-llama/Llama-2-13b-chat-hf模型下载
LoRA参数Llama2-Chinese-7b-Chat-LoRAFlagAlpha/Llama2-Chinese-7b-Chat-LoRAmeta-llama/Llama-2-7b-chat-hf模型下载
LoRA参数Llama2-Chinese-13b-Chat-LoRAFlagAlpha/Llama2-Chinese-13b-Chat-LoRAmeta-llama/Llama-2-13b-chat-hf模型下载
基于Llama2的中文预训练模型Atom

社区提供预训练版本Atom-7B和基于Atom-7B进行对话微调的模型参数供开放下载,模型参数会持续不断更新,关于模型的进展详见社区官网llama.family。

类别模型名称🤗模型加载名称下载地址
预训练Atom-7BFlagAlpha/Atom-7B模型下载
ChatAtom-7B-ChatFlagAlpha/Atom-7B-Chat模型下载

2.2.2 模型调用代码示例

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('FlagAlpha/Atom-7B',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)
model =model.eval()
tokenizer = AutoTokenizer.from_pretrained('FlagAlpha/Atom-7B',use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
input_ids = tokenizer(['<s>Human: 介绍一下中国\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

2.2.3 FastAPI接口搭建

为了方便通过API方式调用模型,我们提供了脚本用来快速搭建FastAPI接口,相关测试代码与API参数设置见API 调用。

2.2.4 Gradio快速搭建问答平台

基于gradio搭建的问答界面,实现了流式的输出,将下面代码复制到控制台运行,以下代码以Atom-7B模型为例,不同模型只需修改一下代码里的模型名称就好了😊

python examples/chat_gradio.py --model_name_or_path FlagAlpha/Atom-7B

2.2.5 Docker部署问答接口

详情参见:Docker部署

第一步:准备docker镜像,通过docker容器启动chat_gradio.py

git clone https://github.com/FlagAlpha/Llama2-Chinese.git

cd Llama2-Chinese

docker build -f docker/Dockerfile -t flagalpha/llama2-chinese-7b:gradio .

第二步:通过docker-compose启动chat_gradio

cd Llama2-Chinese/docker
doker-compose up -d --build

2.3模型预训练

虽然Llama2的预训练数据相对于第一代LLaMA扩大了一倍,但是中文预训练数据的比例依然非常少,仅占0.13%,这也导致了原始Llama2的中文能力较弱。为了能够提升模型的中文能力,可以采用微调和预训练两种路径,其中:

  • 微调需要的算力资源少,能够快速实现一个中文Llama的雏形。但缺点也显而易见,只能激发基座模型已有的中文能力,由于Llama2的中文训练数据本身较少,所以能够激发的能力也有限,治标不治本。

  • 基于大规模中文语料进行预训练,成本高,不仅需要大规模高质量的中文数据,也需要大规模的算力资源。但是优点也显而易见,就是能从模型底层优化中文能力,真正达到治本的效果,从内核为大模型注入强大的中文能力。

我们为社区提供了Llama模型的预训练代码,以及中文测试语料,更多数据可以参考中文语料。具体代码和配置如下:

  • 模型预训练脚本:train/pretrain/pretrain.sh
  • 预训练实现代码:train/pretrain/pretrain_clm.py
  • DeepSpeed加速:
    • 对于单卡训练,可以采用ZeRO-2的方式,参数配置见 train/pretrain/ds_config_zero2.json
    • 对于多卡训练,可以采用ZeRO-3的方式,参数配置见 train/pretrain/ds_config_zero3.json
  • 训练效果度量指标:train/pretrain/accuracy.py

2.4 模型微调

本仓库中同时提供了LoRA微调和全量参数微调代码,关于LoRA的详细介绍可以参考论文“LoRA: Low-Rank Adaptation of Large Language Models”以及微软Github仓库LoRA。

Step1: 环境准备

根据requirements.txt安装对应的环境依赖。

Step2: 数据准备

在data目录下提供了一份用于模型sft的数据样例:

  • 训练数据:data/train_sft.csv
  • 验证数据:data/dev_sft.csv

每个csv文件中包含一列“text”,每一行为一个训练样例,每个训练样例按照以下格式将问题和答案组织为模型输入,您可以按照以下格式自定义训练和验证数据集:

"<s>Human: "+问题+"\n</s><s>Assistant: "+答案

例如,

<s>Human: 用一句话描述地球为什么是独一无二的。</s><s>Assistant: 因为地球是目前为止唯一已知存在生命的行星。</s>

Step3: 微调脚本

LoRA微调

LoRA微调脚本见:train/sft/finetune_lora.sh,关于LoRA微调的具体实现代码见train/sft/finetune_clm_lora.py,单机多卡的微调可以通过修改脚本中的--include localhost:0来实现。

全量参数微调

全量参数微调脚本见:train/sft/finetune.sh,关于全量参数微调的具体实现代码见train/sft/finetune_clm.py。

Step4: 加载微调模型

LoRA微调

基于LoRA微调的模型参数见:基于Llama2的中文微调模型,LoRA参数需要和基础模型参数结合使用。

通过PEFT加载预训练模型参数和微调模型参数,以下示例代码中,base_model_name_or_path为预训练模型参数保存路径,finetune_model_path为微调模型参数保存路径。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel,PeftConfig
#例如: finetune_model_path='FlagAlpha/Llama2-Chinese-7b-Chat-LoRA'
finetune_model_path=''  
config = PeftConfig.from_pretrained(finetune_model_path)
#例如: base_model_name_or_path='meta-llama/Llama-2-7b-chat'
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path,use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)
model = PeftModel.from_pretrained(model, finetune_model_path, device_map={"": 0})
model =model.eval()
input_ids = tokenizer(['<s>Human: 介绍一下北京\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)
全量参数微调

对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。

2.5模型量化

我们对中文微调的模型参数进行了量化,方便以更少的计算资源运行。目前已经在Hugging Face上传了13B中文微调模型FlagAlpha/Llama2-Chinese-13b-Chat的4bit压缩版本FlagAlpha/Llama2-Chinese-13b-Chat-4bit,具体调用方式如下:

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized('FlagAlpha/Llama2-Chinese-13b-Chat-4bit', device="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('FlagAlpha/Llama2-Chinese-13b-Chat-4bit',use_fast=False)
input_ids = tokenizer(['<s>Human: 怎么登上火星\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

2.6 推理加速

随着大模型参数规模的不断增长,在有限的算力资源下,提升模型的推理速度逐渐变为一个重要的研究方向。常用的推理加速框架包含 lmdeploy、FasterTransformer、vLLM和JittorLLMs 等。

FasterTransformer

FasterTransformer由NVIDIA开发,采用C++/CUDA编写,支持分布式推理,transformer编码器和解码器均可进行加速。
通过FasterTransformer和Triton加速LLama2模型推理,目前支持FP16或者Int8推理,Int4目前还不支持。

详细的推理文档见:inference-speed/GPU/FasterTransformer_example

vLLM

vLLM由加州大学伯克利分校开发,核心技术是PageAttention,吞吐量比HuggingFace Transformers高出24倍。相较与FasterTrainsformer,vLLM更加的简单易用,不需要额外进行模型的转换,支持fp16推理。

详细的推理文档见:inference-speed/GPU/vllm_example

JittorLLMs

JittorLLMs由非十科技领衔,与清华大学可视媒体研究中心合作研发,通过动态swap机制大幅降低硬件配置要求(减少80%),并且Jittor框架通过零拷贝技术,大模型加载相比Pytorch开销降低40%,同时,通过元算子自动编译优化,计算性能提升20%以上。

详细的推理文档见:inference-speed/GPU/JittorLLMs

lmdeploy

lmdeploy 由上海人工智能实验室开发,推理使用 C++/CUDA,对外提供 python/gRPC/http 接口和 WebUI 界面,支持 tensor parallel 分布式推理、支持 fp16/weight int4/kv cache int8 量化。

详细的推理文档见:inference-speed/GPU/lmdeploy_example

2.7 模型评测

为了能够更加清晰地了解Llama2模型的中文问答能力,我们筛选了一些具有代表性的中文问题,对Llama2模型进行提问。我们测试的模型包含Meta公开的Llama2-7B-Chat和Llama2-13B-Chat两个版本,没有做任何微调和训练。测试问题筛选自AtomBulb,共95个测试问题,包含:通用知识、语言理解、创作能力、逻辑推理、代码编程、工作技能、使用工具、人格特征八个大的类别。

测试中使用的Prompt如下,例如对于问题“列出5种可以改善睡眠质量的方法”:

[INST] 
<<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. The answer always been translate into Chinese language.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.

The answer always been translate into Chinese language.
<</SYS>>

列出5种可以改善睡眠质量的方法
[/INST]

Llama2-7B-Chat的测试结果见meta_eval_7B.md,Llama2-13B-Chat的测试结果见meta_eval_13B.md。

通过测试我们发现,Meta原始的Llama2 Chat模型对于中文问答的对齐效果一般,大部分情况下都不能给出中文回答,或者是中英文混杂的形式。因此,基于中文数据对Llama2模型进行训练和微调十分必要,我们的中文版Llama2模型也已经在训练中,近期将对社区开放。

2.8 外延能力

除了持续增强大模型内在的知识储备、通用理解、逻辑推理和想象能力等,未来,我们也会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。
我们首先集成了LangChain框架,可以更方便地基于Llama2开发文档检索、问答机器人和智能体应用等,关于LangChain的更多介绍参见LangChain。

LangChain

针对LangChain框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,简单的调用代码示例如下:

from llama2_for_langchain import Llama2

#这里以调用4bit量化压缩的Llama2-Chinese参数FlagAlpha/Llama2-Chinese-13b-Chat-4bit为例
llm = Llama2(model_name_or_path='FlagAlpha/Llama2-Chinese-13b-Chat-4bit', bit4=True)

while True:
    human_input = input("Human: ")
    response = llm(human_input)
    print(f"Llama2: {response}")

2.9 代码模型

Meta官方在2023年8月24日发布了Code Llama,基于代码数据对Llama2进行了微调,提供三个不同功能的版本:基础模型(Code Llama)、Python专用模型(Code Llama - Python)和指令跟随模型(Code Llama - Instruct),包含7B、13B、34B三种不同参数规模。不同模型能力区别如下表所示:

模型类别模型名称代码续写代码填充指令编程
Code LlamaCodeLlama-7b
CodeLlama-13b
CodeLlama-34b
Code Llama - PythonCodeLlama-7b-Python
CodeLlama-13b-Python
CodeLlama-34b-Python
Code Llama - InstructCodeLlama-7b-Instruct
CodeLlama-13b-Instruct
CodeLlama-34b-Instruct

我们提供了Code Llama的国内下载链接以及在线体验地址llama.family,关于Code Llama的详细信息可以参考官方Github仓库codellama。

3.学习资料

  • Meta官方对于Llama2的介绍
    自从Meta公司发布第一代LLaMA模型以来,羊驼模型家族繁荣发展。近期Meta发布了Llama2版本,开源可商用,在模型和效果上有了重大更新。Llama2总共公布了7B、13B和70B三种参数大小的模型。相比于LLaMA,Llama2的训练数据达到了2万亿token,上下文长度也由之前的2048升级到4096,可以理解和生成更长的文本。Llama2 Chat模型基于100万人类标记数据微调得到,在英文对话上达到了接近ChatGPT的效果。

  • Llama相关论文

  • LLaMA: Open and Efficient Foundation Language Models

  • Llama 2: Open Foundation and Fine-Tuned Chat Models

  • Code Llama: Open Foundation Models for Code

  • Llama2的评测结果

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1079298.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux上通过mysqldump命令实现自动备份

Linux上通过mysqldump命令实现自动备份 直接上代码 #!/bin/bash mysql_user"root" mysql_host"localhost" mysql_port"3306" mysql_charset"utf8mb4"backup_location/home/mysql/mysql_back/sql # 是否开始自动删除过期文件,过期时间…

PUPANVR-LVGL UI主菜单及设置窗体框架(9)

PUPA NVR UI主菜单及设置窗体框架 在设计UI时&#xff0c;竟量把数据、控制、显示&#xff0c;分开&#xff0c;即MVC的一个模式吧&#xff01;使用MVC这样的模式思想&#xff0c;会让代码简洁不少&#xff0c;逻辑也很清析&#xff01; 具体的代码见&#xff1a; PUPANVR这个…

北邮22级信通院数电:Verilog-FPGA(4)第三周实验:按键消抖、呼吸灯、流水灯 操作流程注意事项

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.注意事项 二.按键消抖 2.1 LED_deboun…

面试题补充

1.公司有几套环境&#xff1a;测试环境&#xff08;测试人员使用&#xff09;&#xff0c;开发环境&#xff08;开发人员使用&#xff09;&#xff0c;预生产环境&#xff08;测试人员使用&#xff09;&#xff0c;生产环境&#xff08;用户使用&#xff09; 2.作为一名测试&a…

关于GP7 release版在麒麟V10信创操作系统编译不过的问题解决

背景 大家期盼已久的Greenplum 7 最终版终于发布了&#xff01;好消息&#xff01;&#xff01; 很多同学已经忍不住想快速试用GP 7新版本了&#xff0c;同时&#xff0c;为了满足信创要求&#xff0c;需要在国产的操作系统服务器上运行GP。 然后官方的GP 7并没有明确声明支持…

run_main_loop 到 cmd_process处理说明三

一. run_main_loop 到 cmd_process处理过程 之前文章了解了 uboot的命令格式组成。本文简单分析下 cmd_process函数对 uboot命令的处理过程。 本文继上一篇文章的学习&#xff0c;地址如下&#xff1a; uboot启动流程-run_main_loop 到 cmd_process处理说明二-CSDN博客 二. …

扎克伯格:希望借助数字助理、智能眼镜和AI帮助推动元宇宙发展

Meta推出了新的人工智能工具和名人代言的数字助手&#xff0c;首席执行官马克扎克伯格希望这些工具可以帮助推动元宇宙的发展。 9月30日消息&#xff0c;据外媒报道&#xff0c;Meta推出了新的人工智能工具和名人代言的数字助手&#xff0c;首席执行官马克扎克伯格希望这些工具…

Swagger3.0 与spring boot2.7x 整合避免swagger2.0与boot2.7冲突

注释掉2.0引入的俩包 直接引入3.0 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artifactId><version>3.0.0</version></dependency> swagger配置文件粘贴即用哦 import org.springfram…

提取Android盒子dtb文件

概述 最近从某鱼上掏了一个CM201-1 YS的盒子&#xff0c;动手倒腾倒腾&#xff0c;准备安装Armbian&#xff0c;用来做矿机&#xff0c;但该型号的盒子ophub上面没有完全适配的镜像&#xff0c;故而想尝试下&#xff0c;看能否整个适配镜像出来。 操作系统 Windows Linux 工…

JMeter—逻辑控制器

JMeter逻辑控制器 JMeter逻辑控制器可以对元件的执行逻辑进行控制&#xff0c;除仅一次控制器外&#xff0c;其他可以嵌套别的种类的逻辑控制器  一、ForEach控制器 定义一个循环规则&#xff0c;关键参数说明&#xff1a;   输入变量前缀&#xff1a;可以在“用户自定义的…

10月TIOBE榜Java跌出前三!要不我转回C#吧

前言 Java又要完了&#xff0c;又要没了&#xff0c;你没看错&#xff0c;10月编程语言榜单出炉&#xff0c;Java跌出前三&#xff0c;并且即将被C#超越&#xff0c;很多资深人士预测只需两个月&#xff0c;Java就会跌出前五。 看到这样的文章&#xff0c;作为一名Java工程师我…

Cmake 3.27.5 发布,开源构建系统

导读CMake 是一个跨平台的自动化构建系统&#xff0c;它使用一个名为 CMakeLists.txt 的文件来描述构建过程&#xff0c;可以产生标准的构建文件&#xff0c;如 Unix 的 Makefile 或 Windows Visual C 的 projects/workspaces 。文件 CMakeLists.txt 需要手工编写&#xff0c;也…

静电地桩的安装和使用说明

静电地桩的安装使用需要遵循以下步骤&#xff1a; 确定静电地桩的位置&#xff1a;静电地桩应该安装在需要消除静电的区域&#xff0c;如易燃易爆场所、电子厂、医院等。在安装前需要对地面进行清洁和处理&#xff0c;确保地面平整、干燥、无灰尘等杂物。 安装静电地桩&#xf…

FPM-FORM

FPM DEMO&#xff1a;FPM_OVP_COMPONENT FORM&#xff1a; IF_FPM_GUIBB_FORM TABLE LIST&#xff1a; IF_FPM_GUIBB_LIST TREE&#xff1a; IF_FPM_GUIBB_TREE SEARCH LIST&#xff1a; IF_FPM_GUIBB_SEARCH 需求&#xff1a;FPM启动时默认从EKPO去一条采购订单数据&#xff…

想要用Chat GPT写申请文书?先看各大名校招生官对它的态度是什么?

新的申请季已经正式开始&#xff0c;一些热门项目的ED截止日期也不再遥远&#xff0c;因此很多准留学生们都已经开始了关于文书的创作。 而随着科技的不断发展&#xff0c;以ChatGPT为首的一众AI工具也作为一种辅助手段愈发融入了我们的生活。 那么不免就会有一些同学在准备申…

提升后端API性能的几种解决方案

&#x1f514;目的 提升后端API性能的主要目的是为了提高系统整体的响应速度、并发能力以及可用性。主要原因包括: 提高用户体验 后端API性能好可以减少响应延迟,给用户流畅的体验。 提高系统吞吐量 优化API性能可以提高系统的整体吞吐量,处理更多用户请求。 节省服务器资源…

wps演示时图片任意位置拖动

wps演示时图片任意位置拖动 1.wps11.1版本&#xff0c;其他版本的宏插件可以自己下载。2.先确认自己的wps版本是不是11.13.检查是否有图像工具4.检查文件格式和安全5.开发工具--图像6.选中图像控件&#xff0c;右击选择查看代码&#xff0c;将原有代码删除&#xff0c;将下边代…

经典面试题第十更---instanceof与typeof

前言&#xff1a; &#x1f921; 作者简介&#xff1a;我是Morning&#xff0c;计算机的打工人&#xff0c;想要翻身做主人 &#x1f648; &#x1f648; &#x1f648; &#x1f3e0; 个人主页&#xff1a; Morning的主页 &#x1f4d5;系列专栏&#xff1a; 前端…

「Qt中文教程指南」如何创建基于Qt Widget的应用程序(二)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写&#xff0c;所有平台无差别运行&#xff0c;更提供了几乎所有开发过程中需要用到的工具。如今&#xff0c;Qt已被运用于超过70个行业、数千家企业&#xff0c;支持数百万设备及应用。 本文描述了如何使用…

计算机毕业设计选什么题目好?springboot 班级事务管理系统

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…