ChatGLM2-6B微调实践-P-Tuning方案

news2025/1/26 15:51:53

ChatGLM2-6B微调实践

    • 环境准备
    • 安装部署
        • 1、安装 Anaconda
        • 2、安装CUDA
        • 3、安装PyTorch
        • 4、安装 ChatGLM2-6B
    • 微调实践
        • 1、准备数据集
        • 2、安装python依赖
        • 3、微调并训练新模型
        • 4、微调后模型的推理与评估
        • 5、验证与评估微调后的模型
        • 6、微调模型优化
        • 7、P-Tuning微调灾难性遗忘问题
    • 微调过程中遇到的问题

环境准备

申请阿里云GPU服务器:

  • CentOS 7.6 64
  • Anaconda3-2023.07-1-Linux-x86_64
  • Python 3.11.5
  • GPU NVIDIA A10(显存24 G/1 core)
  • CPU 8 vCore/30G

在这里插入图片描述

安装部署

1、安装 Anaconda
wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
sh Anaconda3-2023.07-1-Linux-x86_64.sh

根据提示一路安装即可。

2、安装CUDA
wget https://developer.download.nvidia.com/compute/cuda/11.2.0/local_installers/cuda_11.2.0_460.27.04_linux.run
sh cuda_11.2.0_460.27.04_linux.run

根据提示安装即可

3、安装PyTorch
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia

如提示找不到conda命令,需配置Anaconda环境变量。

4、安装 ChatGLM2-6B
mkdir ChatGLM
cd ChatGLM
git clone https://github.com/THUDM/ChatGLM2-6B.git
cd ChatGLM2-6B
pip install -r requirements.txt

加载模型,需要从网上下载模型的7个分片文件,总共大约10几个G大小,可提前下载。

模型下载地址:https://huggingface.co/THUDM/chatglm2-6b/tree/main

微调实践

1、准备数据集

准备我们自己的数据集,分别生成训练文件和测试文件这两个文件,放在目录 ChatGLM2-6B/ptuning/myDataset/ 下面。

训练集文件: train.json
测试集文件: dev.json
在这里插入图片描述

2、安装python依赖

后面微调训练,需要依赖一些 Python 模块,提前安装一下:

conda install rouge_chinese nltk jieba datasets
3、微调并训练新模型

修改 train.sh 脚本文件,根据自己实际情况配置即可,修改后的配置为:

PRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=1
 
torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_train \
    --train_file myDataset/train.json \
    --validation_file myDataset/dev.json \
    --preprocessing_num_workers 6 \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b \
    --output_dir output/zhbr-chatglm2-6b-checkpoint \
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 128 \
    --per_device_train_batch_size 6 \
    --per_device_eval_batch_size 6 \
    --gradient_accumulation_steps 16 \
    --predict_with_generate \
    --max_steps 20 \
    --logging_steps 5 \
    --save_steps 5 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4

修改完即可进行微调:

cd /root/ChatGLM/ChatGLM2-6B/ptuning/
sh train.sh

运行结果如下:

(base) [root@iZbp178u8rw9n9ko94ubbyZ ptuning]# sh train.sh 
[2023-10-08 13:09:12,312] torch.distributed.run: [WARNING] master_addr is only used for static rdzv_backend and when rdzv_endpoint is not specified.
10/08/2023 13:09:15 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
10/08/2023 13:09:15 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=IntervalStrategy.NO,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=16,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=HubStrategy.EVERY_SAVE,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=0.02,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=output/zhbr-chatglm2-6b-checkpoint/runs/Oct08_13-09-15_iZbp178u8rw9n9ko94ubbyZ,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=5,
logging_strategy=IntervalStrategy.STEPS,
lr_scheduler_type=SchedulerType.LINEAR,
max_grad_norm=1.0,
max_steps=20,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=OptimizerNames.ADAMW_TORCH,
optim_args=None,
output_dir=output/zhbr-chatglm2-6b-checkpoint,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=6,
per_device_train_batch_size=6,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=output/zhbr-chatglm2-6b-checkpoint,
save_on_each_node=False,
save_safetensors=False,
save_steps=5,
save_strategy=IntervalStrategy.STEPS,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
sortish_sampler=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
10/08/2023 13:09:16 - WARNING - datasets.builder - Found cached dataset json (/root/.cache/huggingface/datasets/json/default-8e52c57dfec9ef61/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4)
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1379.71it/s]
[INFO|configuration_utils.py:713] 2023-10-08 13:09:16,749 >> loading configuration file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/config.json
[INFO|configuration_utils.py:713] 2023-10-08 13:09:16,751 >> loading configuration file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/config.json
[INFO|configuration_utils.py:775] 2023-10-08 13:09:16,751 >> Model config ChatGLMConfig {
  "_name_or_path": "/root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b",
  "add_bias_linear": false,
  "add_qkv_bias": true,
  "apply_query_key_layer_scaling": true,
  "apply_residual_connection_post_layernorm": false,
  "architectures": [
    "ChatGLMModel"
  ],
  "attention_dropout": 0.0,
  "attention_softmax_in_fp32": true,
  "auto_map": {
    "AutoConfig": "configuration_chatglm.ChatGLMConfig",
    "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
  },
  "bias_dropout_fusion": true,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "ffn_hidden_size": 13696,
  "fp32_residual_connection": false,
  "hidden_dropout": 0.0,
  "hidden_size": 4096,
  "kv_channels": 128,
  "layernorm_epsilon": 1e-05,
  "model_type": "chatglm",
  "multi_query_attention": true,
  "multi_query_group_num": 2,
  "num_attention_heads": 32,
  "num_layers": 28,
  "original_rope": true,
  "pad_token_id": 0,
  "padded_vocab_size": 65024,
  "post_layer_norm": true,
  "pre_seq_len": null,
  "prefix_projection": false,
  "quantization_bit": 0,
  "rmsnorm": true,
  "seq_length": 32768,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.32.1",
  "use_cache": true,
  "vocab_size": 65024
}

[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:09:16,752 >> loading file tokenizer.model
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:09:16,752 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:09:16,752 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:09:16,753 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2776] 2023-10-08 13:09:16,832 >> loading weights file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/pytorch_model.bin.index.json
[INFO|configuration_utils.py:768] 2023-10-08 13:09:16,833 >> Generate config GenerationConfig {
  "_from_model_config": true,
  "eos_token_id": 2,
  "pad_token_id": 0,
  "transformers_version": "4.32.1"
}

Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:05<00:00,  1.39it/s]
[INFO|modeling_utils.py:3551] 2023-10-08 13:09:21,906 >> All model checkpoint weights were used when initializing ChatGLMForConditionalGeneration.

[WARNING|modeling_utils.py:3553] 2023-10-08 13:09:21,906 >> Some weights of ChatGLMForConditionalGeneration were not initialized from the model checkpoint at /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b and are newly initialized: ['transformer.prefix_encoder.embedding.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
[INFO|modeling_utils.py:3136] 2023-10-08 13:09:21,908 >> Generation config file not found, using a generation config created from the model config.
Quantized to 4 bit
input_ids [64790, 64792, 790, 30951, 517, 30910, 30939, 30996, 13, 13, 54761, 31211, 55046, 54766, 36989, 38724, 54643, 31962, 13, 13, 55437, 31211, 30910, 30939, 31201, 54675, 54592, 33933, 31211, 31779, 32804, 51962, 31201, 39510, 57517, 56689, 31201, 48981, 57486, 55014, 31201, 55568, 56528, 55082, 54831, 54609, 54659, 30943, 31201, 35066, 54642, 36989, 31211, 31779, 35066, 54642, 56042, 55662, 31201, 54539, 56827, 31201, 55422, 54639, 55534, 31201, 33576, 57062, 54848, 31201, 55662, 55816, 41670, 39305, 33760, 36989, 54659, 30966, 31201, 32531, 31838, 54643, 31668, 31687, 31211, 31779, 32531, 31838, 33853, 31201, 32077, 43641, 31201, 54933, 55194, 32366, 32531, 49729, 39305, 33760, 36989, 54659, 30972, 31201, 31641, 48655, 31211, 31779, 36293, 54535, 32155, 31201, 45561, 54585, 31940, 54535, 32155, 31201, 54962, 55478, 54535, 32155, 54609, 31641, 31746, 31639, 31123, 32023, 54603, 36989, 55045, 58286, 49539, 31639, 31123, 36128, 33423, 32077, 36989, 31155, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
inputs [Round 1]

问:配网故障类别及原因

答: 1、外力破坏:包括车辆撞击、树木刮擦、风筝坠落、倒杆断线等;2、季节性故障:包括季节性覆冰、大雾、雨加雪、温度骤变、冰灾等因素导致的线路故障;3、施工质量及技术方面:包括施工质量不良、设备老化、未按规范施工等原因导致的线路故障;4、管理不到位:包括巡视不及时、发现问题后处理不及时、消缺不及时等管理上的问题,导致小故障积攒成大问题,进而引发设备故障。
label_ids [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 30910, 30939, 31201, 54675, 54592, 33933, 31211, 31779, 32804, 51962, 31201, 39510, 57517, 56689, 31201, 48981, 57486, 55014, 31201, 55568, 56528, 55082, 54831, 54609, 54659, 30943, 31201, 35066, 54642, 36989, 31211, 31779, 35066, 54642, 56042, 55662, 31201, 54539, 56827, 31201, 55422, 54639, 55534, 31201, 33576, 57062, 54848, 31201, 55662, 55816, 41670, 39305, 33760, 36989, 54659, 30966, 31201, 32531, 31838, 54643, 31668, 31687, 31211, 31779, 32531, 31838, 33853, 31201, 32077, 43641, 31201, 54933, 55194, 32366, 32531, 49729, 39305, 33760, 36989, 54659, 30972, 31201, 31641, 48655, 31211, 31779, 36293, 54535, 32155, 31201, 45561, 54585, 31940, 54535, 32155, 31201, 54962, 55478, 54535, 32155, 54609, 31641, 31746, 31639, 31123, 32023, 54603, 36989, 55045, 58286, 49539, 31639, 31123, 36128, 33423, 32077, 36989, 31155, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]
labels 1、外力破坏:包括车辆撞击、树木刮擦、风筝坠落、倒杆断线等;2、季节性故障:包括季节性覆冰、大雾、雨加雪、温度骤变、冰灾等因素导致的线路故障;3、施工质量及技术方面:包括施工质量不良、设备老化、未按规范施工等原因导致的线路故障;4、管理不到位:包括巡视不及时、发现问题后处理不及时、消缺不及时等管理上的问题,导致小故障积攒成大问题,进而引发设备故障。
[INFO|trainer.py:565] 2023-10-08 13:09:26,290 >> max_steps is given, it will override any value given in num_train_epochs
[INFO|trainer.py:1714] 2023-10-08 13:09:26,460 >> ***** Running training *****
[INFO|trainer.py:1715] 2023-10-08 13:09:26,460 >>   Num examples = 17
[INFO|trainer.py:1716] 2023-10-08 13:09:26,460 >>   Num Epochs = 20
[INFO|trainer.py:1717] 2023-10-08 13:09:26,460 >>   Instantaneous batch size per device = 6
[INFO|trainer.py:1720] 2023-10-08 13:09:26,460 >>   Total train batch size (w. parallel, distributed & accumulation) = 96
[INFO|trainer.py:1721] 2023-10-08 13:09:26,460 >>   Gradient Accumulation steps = 16
[INFO|trainer.py:1722] 2023-10-08 13:09:26,460 >>   Total optimization steps = 20
[INFO|trainer.py:1723] 2023-10-08 13:09:26,460 >>   Number of trainable parameters = 1,835,008
  0%|                                                                                                                                                                                                 | 0/20 [00:00<?, ?it/s]10/08/2023 13:09:26 - WARNING - transformers_modules.chatglm2-6b.modeling_chatglm - `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...
/root/anaconda3/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
{'loss': 0.5058, 'learning_rate': 0.015, 'epoch': 5.0}                                                                                                                                                                       
 25%|██████████████████████████████████████████████▎                                                                                                                                          | 5/20 [00:21<00:56,  3.77s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:460] 2023-10-08 13:09:47,797 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-5/config.json
[INFO|configuration_utils.py:544] 2023-10-08 13:09:47,797 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-5/generation_config.json
[INFO|modeling_utils.py:1953] 2023-10-08 13:09:47,805 >> Model weights saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-5/pytorch_model.bin
[INFO|tokenization_utils_base.py:2235] 2023-10-08 13:09:47,805 >> tokenizer config file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-5/tokenizer_config.json
[INFO|tokenization_utils_base.py:2242] 2023-10-08 13:09:47,807 >> Special tokens file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-5/special_tokens_map.json
/root/anaconda3/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
{'loss': 0.2925, 'learning_rate': 0.01, 'epoch': 9.0}                                                                                                                                                                        
 50%|████████████████████████████████████████████████████████████████████████████████████████████                                                                                            | 10/20 [00:34<00:31,  3.17s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:460] 2023-10-08 13:10:01,413 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-10/config.json
[INFO|configuration_utils.py:544] 2023-10-08 13:10:01,413 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-10/generation_config.json
[INFO|modeling_utils.py:1953] 2023-10-08 13:10:01,419 >> Model weights saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-10/pytorch_model.bin
[INFO|tokenization_utils_base.py:2235] 2023-10-08 13:10:01,420 >> tokenizer config file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-10/tokenizer_config.json
[INFO|tokenization_utils_base.py:2242] 2023-10-08 13:10:01,420 >> Special tokens file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-10/special_tokens_map.json
/root/anaconda3/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
{'loss': 0.2593, 'learning_rate': 0.005, 'epoch': 13.0}                                                                                                                                                                      
 75%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████                                              | 15/20 [00:48<00:14,  2.93s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:460] 2023-10-08 13:10:15,139 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-15/config.json
[INFO|configuration_utils.py:544] 2023-10-08 13:10:15,139 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-15/generation_config.json
[INFO|modeling_utils.py:1953] 2023-10-08 13:10:15,146 >> Model weights saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-15/pytorch_model.bin
[INFO|tokenization_utils_base.py:2235] 2023-10-08 13:10:15,146 >> tokenizer config file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-15/tokenizer_config.json
[INFO|tokenization_utils_base.py:2242] 2023-10-08 13:10:15,146 >> Special tokens file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-15/special_tokens_map.json
/root/anaconda3/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
{'loss': 0.3026, 'learning_rate': 0.0, 'epoch': 18.0}                                                                                                                                                                        
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [01:05<00:00,  3.35s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:460] 2023-10-08 13:10:32,333 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-20/config.json
[INFO|configuration_utils.py:544] 2023-10-08 13:10:32,333 >> Configuration saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-20/generation_config.json
[INFO|modeling_utils.py:1953] 2023-10-08 13:10:32,340 >> Model weights saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-20/pytorch_model.bin
[INFO|tokenization_utils_base.py:2235] 2023-10-08 13:10:32,340 >> tokenizer config file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-20/tokenizer_config.json
[INFO|tokenization_utils_base.py:2242] 2023-10-08 13:10:32,340 >> Special tokens file saved in output/zhbr-chatglm2-6b-checkpoint/checkpoint-20/special_tokens_map.json
[INFO|trainer.py:1962] 2023-10-08 13:10:32,354 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)


{'train_runtime': 65.8941, 'train_samples_per_second': 29.138, 'train_steps_per_second': 0.304, 'train_loss': 0.3400604248046875, 'epoch': 18.0}                                                                             
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [01:05<00:00,  3.29s/it]
***** train metrics *****
  epoch                    =       18.0
  train_loss               =     0.3401
  train_runtime            = 0:01:05.89
  train_samples            =         17
  train_samples_per_second =     29.138
  train_steps_per_second   =      0.304
4、微调后模型的推理与评估

对微调后的模型进行评估验证,修改 evaluate.sh 脚本中的 checkpoint 目录:

PRE_SEQ_LEN=128
CHECKPOINT=zhbr-chatglm2-6b-checkpoint
STEP=20
NUM_GPUS=1
 
torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_predict \
    --validation_file myDataset/train.json \
    --test_file myDataset/dev.json \
    --overwrite_cache \
    --prompt_column content \
    --response_column summary \
    --model_name_or_path /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b \
    --ptuning_checkpoint ./output/$CHECKPOINT/checkpoint-$STEP \
    --output_dir ./output/$CHECKPOINT \
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 64 \
    --per_device_eval_batch_size 1 \
    --predict_with_generate \
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4

对微调后的模型进行推理和评估:

/root/ChatGLM/ChatGLM2-6B/ptuning/
sh evaluate.sh

运行结果如下:

(base) [root@iZbp178u8rw9n9ko94ubbyZ ptuning]# sh evaluate.sh 
[2023-10-08 13:19:53,448] torch.distributed.run: [WARNING] master_addr is only used for static rdzv_backend and when rdzv_endpoint is not specified.
10/08/2023 13:19:56 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
10/08/2023 13:19:56 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=IntervalStrategy.NO,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=HubStrategy.EVERY_SAVE,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=./output/zhbr-chatglm2-6b-checkpoint/runs/Oct08_13-19-56_iZbp178u8rw9n9ko94ubbyZ,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=IntervalStrategy.STEPS,
lr_scheduler_type=SchedulerType.LINEAR,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=OptimizerNames.ADAMW_TORCH,
optim_args=None,
output_dir=./output/zhbr-chatglm2-6b-checkpoint,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=1,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=./output/zhbr-chatglm2-6b-checkpoint,
save_on_each_node=False,
save_safetensors=False,
save_steps=500,
save_strategy=IntervalStrategy.STEPS,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
sortish_sampler=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-98f5c44ca2dd481e/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 17623.13it/s]
Extracting data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 3012.07it/s]
Dataset json downloaded and prepared to /root/.cache/huggingface/datasets/json/default-98f5c44ca2dd481e/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4. Subsequent calls will reuse this data.
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1488.66it/s]
[INFO|configuration_utils.py:713] 2023-10-08 13:19:57,908 >> loading configuration file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/config.json
[INFO|configuration_utils.py:713] 2023-10-08 13:19:57,909 >> loading configuration file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/config.json
[INFO|configuration_utils.py:775] 2023-10-08 13:19:57,910 >> Model config ChatGLMConfig {
  "_name_or_path": "/root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b",
  "add_bias_linear": false,
  "add_qkv_bias": true,
  "apply_query_key_layer_scaling": true,
  "apply_residual_connection_post_layernorm": false,
  "architectures": [
    "ChatGLMModel"
  ],
  "attention_dropout": 0.0,
  "attention_softmax_in_fp32": true,
  "auto_map": {
    "AutoConfig": "configuration_chatglm.ChatGLMConfig",
    "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
    "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
  },
  "bias_dropout_fusion": true,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "ffn_hidden_size": 13696,
  "fp32_residual_connection": false,
  "hidden_dropout": 0.0,
  "hidden_size": 4096,
  "kv_channels": 128,
  "layernorm_epsilon": 1e-05,
  "model_type": "chatglm",
  "multi_query_attention": true,
  "multi_query_group_num": 2,
  "num_attention_heads": 32,
  "num_layers": 28,
  "original_rope": true,
  "pad_token_id": 0,
  "padded_vocab_size": 65024,
  "post_layer_norm": true,
  "pre_seq_len": null,
  "prefix_projection": false,
  "quantization_bit": 0,
  "rmsnorm": true,
  "seq_length": 32768,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.32.1",
  "use_cache": true,
  "vocab_size": 65024
}

[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:19:57,911 >> loading file tokenizer.model
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:19:57,911 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:19:57,911 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1850] 2023-10-08 13:19:57,911 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2776] 2023-10-08 13:19:57,988 >> loading weights file /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b/pytorch_model.bin.index.json
[INFO|configuration_utils.py:768] 2023-10-08 13:19:57,989 >> Generate config GenerationConfig {
  "_from_model_config": true,
  "eos_token_id": 2,
  "pad_token_id": 0,
  "transformers_version": "4.32.1"
}

Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:04<00:00,  1.41it/s]
[INFO|modeling_utils.py:3551] 2023-10-08 13:20:02,988 >> All model checkpoint weights were used when initializing ChatGLMForConditionalGeneration.

[WARNING|modeling_utils.py:3553] 2023-10-08 13:20:02,988 >> Some weights of ChatGLMForConditionalGeneration were not initialized from the model checkpoint at /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b and are newly initialized: ['transformer.prefix_encoder.embedding.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
[INFO|modeling_utils.py:3136] 2023-10-08 13:20:02,989 >> Generation config file not found, using a generation config created from the model config.
Quantized to 4 bit
input_ids [64790, 64792, 790, 30951, 517, 30910, 30939, 30996, 13, 13, 54761, 31211, 55046, 54848, 55623, 55279, 36989, 13, 13, 55437, 31211]                                                                                
inputs [Round 1]

问:配变雷击故障

答:
label_ids [64790, 64792, 30910, 55623, 54710, 31921, 55279, 54538, 55046, 38754, 33760, 54746, 32077, 31123, 32023, 33760, 41711, 31201, 32077, 55870, 56544, 35978, 31155]
labels 雷电直接击中配电网线路或设备,导致线路损坏、设备烧毁等问题。
10/08/2023 13:20:06 - INFO - __main__ - *** Predict ***
[INFO|trainer.py:3119] 2023-10-08 13:20:06,946 >> ***** Running Prediction *****
[INFO|trainer.py:3121] 2023-10-08 13:20:06,946 >>   Num examples = 2
[INFO|trainer.py:3124] 2023-10-08 13:20:06,946 >>   Batch size = 1
[INFO|configuration_utils.py:768] 2023-10-08 13:20:06,949 >> Generate config GenerationConfig {
  "_from_model_config": true,
  "eos_token_id": 2,
  "pad_token_id": 0,
  "transformers_version": "4.32.1"
}

  0%|                                                                                                                                                                                                  | 0/2 [00:00<?, ?it/s][INFO|configuration_utils.py:768] 2023-10-08 13:20:11,223 >> Generate config GenerationConfig {
  "_from_model_config": true,
  "eos_token_id": 2,
  "pad_token_id": 0,
  "transformers_version": "4.32.1"
}

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.09it/s]Building prefix dict from the default dictionary ...
10/08/2023 13:20:13 - DEBUG - jieba - Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
10/08/2023 13:20:13 - DEBUG - jieba - Dumping model to file cache /tmp/jieba.cache
Loading model cost 0.440 seconds.
10/08/2023 13:20:13 - DEBUG - jieba - Loading model cost 0.440 seconds.
Prefix dict has been built successfully.
10/08/2023 13:20:13 - DEBUG - jieba - Prefix dict has been built successfully.
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:02<00:00,  1.14s/it]
***** predict metrics *****
  predict_bleu-4             =    10.9723
  predict_rouge-1            =    44.0621
  predict_rouge-2            =    11.9047
  predict_rouge-l            =    33.5968
  predict_runtime            = 0:00:06.56
  predict_samples            =          2
  predict_samples_per_second =      0.305
  predict_steps_per_second   =      0.305
5、验证与评估微调后的模型

方法一:

编写python脚本,加载微调训练后生成的 Checkpoint 路径:

from transformers import AutoConfig, AutoModel, AutoTokenizer
import os
import torch
# 载入Tokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
config = AutoConfig.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, pre_seq_len=128)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join("./output/zhbr-chatglm2-6b-checkpoint/checkpoint-20", "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
    if k.startswith("transformer.prefix_encoder."):
        new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)

# Comment out the following line if you don't use quantization
model = model.quantize(4) #或者8
model = model.half().cuda()
model.transformer.prefix_encoder.float()
model = model.eval()

response, history = model.chat(tokenizer, "配网线路过电压故障是什么", history=[])
print(response)

回答效果如下:
在这里插入图片描述

以上代码需要修改THUDM/chatglm2-6b为自己的本地路径,然后再修改基座模型的文件的config.json中的_name_or_path。

方法二:

修改ptuning中的web_demo.sh,根据自己实际情况配置:

PRE_SEQ_LEN=128

CUDA_VISIBLE_DEVICES=0 python3 web_demo.py \
    --model_name_or_path /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b \
    --ptuning_checkpoint output/zhbr-chatglm2-6b-checkpoint/checkpoint-20 \
    --pre_seq_len $PRE_SEQ_LEN

执行web_demo.sh,访问http://xxx.xxx.xxx.xxx:7860。

(base) [root@iZbp178u8rw9n9ko94ubbyZ ptuning]# sh web_demo.sh 
/root/ChatGLM/ChatGLM2-6B-main/ptuning/web_demo.py:101: GradioDeprecationWarning: The `style` method is deprecated. Please set these arguments in the constructor instead.
  user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
Loading prefix_encoder weight from output/zhbr-chatglm2-6b-checkpoint/checkpoint-20
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:04<00:00,  1.47it/s]
Some weights of ChatGLMForConditionalGeneration were not initialized from the model checkpoint at /root/ChatGLM/ChatGLM2-6B-main/zhbr/chatglm2-6b and are newly initialized: ['transformer.prefix_encoder.embedding.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
6、微调模型优化

适当修改微调脚本train.sh文件中的各个参数:

--train_file myDataset/train.json \     # 训练文件地址
--validation_file myDataset/dev.json \   # 验证文件地址
--prompt_column content \       # 在输入数据中,用于作为输入的列名是“content”
--response_column summary \      # 在输入数据中,用于作为目标的列名是“summary”
--overwrite_cache \              # 覆盖缓存
--model_name_or_path THUDM/chatglm-6b \  # 加载模型文件地址,可修改为本地路径
--output_dir output/zhbr-chatglm2-6b-checkpoint \    # 保存训练模型文件地址
--overwrite_output_dir \	# 覆盖output文件夹
--max_source_length 64 \     # 输入序列的最大长度
--max_target_length 128 \	# 目标序列的最大长度
--per_device_train_batch_size 1 \    # 每个设备上的训练批次大小
--per_device_eval_batch_size 1 \	# 每个设备上的评估批次大小
--gradient_accumulation_steps 16 \    # 在进行一次参数更新之前,要进行的梯度累积步骤的数量
--predict_with_generate \	# 使用生成的方式来进行预测
--max_steps 2000 \    # 训练模型的步数
--logging_steps 10 \  # 每多少步打印一次日志
--save_steps 500 \    # 每多少步保存一次模型检查点
--learning_rate $LR \ # 学习率
--pre_seq_len $PRE_SEQ_LEN \ # 序列的预设长度
--quantization_bit 4   # 可修改为int8
7、P-Tuning微调灾难性遗忘问题

微调后问答仅能回答数据集中的信息,通用问答能力完全丧失。 具体参考GitHub Issues
两种解决方案:
(1)适当调整参数,部分网友通过调整学习率,表示遗忘问题得到缓解。参考:issue#480、 issue#1148
(2)放弃P-Tuning微调,采用lora和Qlora微调。QLora微调方案参考:ChatGLM2-6B微调实践-QLora方案

微调过程中遇到的问题

报错信息如下:

dataclasses.FrozenInstanceError: cannot assign to field generation_max_length
和
dataclasses.FrozenInstanceError: cannot assign to field generation_num_beams

解决方法:
在main.py文件中注释掉以下代码。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1077904.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vulnhub_Inferno靶机渗透测试

Inferno靶机 靶机地址&#xff1a;https://www.vulnhub.com/entry/inferno-11,603/ 文章目录 Inferno靶机信息收集web渗透获取权限横向移动权限提升靶机总结 信息收集 1.通过nmap扫描得到靶机开放22和80端口&#xff0c;看来是主web端渗透了 使用dirsearch目录扫描没得到结果…

【Mybatis】动态 SQL

动态 SQL \<if>标签\<trim>标签\<where>标签\<set>标签\<foreach>标签 动态 sql 是 Mybatis 的强⼤特性之⼀&#xff0c;能够完成不同条件下不同的 sql 拼接。 <if>标签 前端用户输入时有些选项是非必填的, 那么此时传到后端的参数是不确…

面试总结(mysql定精度/oom排查/spring三级缓存/stream流)

Mysql数据类型上的一个把握 1、MySQL Decimal为什么不会丢失精度 DECIMAL的存储方式和其他数据类型都不同&#xff0c;它是以字符串形式存储的。假设一个字段为DECIMAL(3,0)&#xff0c;当我们存入100时&#xff0c;实际上存入的1、0、0这三个字符拼接而成的字符串的二进制值&…

Linux 基本指令(下)

时间相关的指令 date显示 date 指定格式显示时间&#xff1a; date %Y:%m:%d date 用法&#xff1a;date [OPTION]... [FORMAT] 1.在显示方面&#xff0c;使用者可以设定欲显示的格式&#xff0c;格式设定为一个加号后接数个标记&#xff0c;其中常用的标记列表如下 %…

1010hw

using namespace std; class Per {friend const Per operator-(const Per &L,const Per &R);friend bool operator<(const Per &L,const Per &R);int a;int b; public://有参构造Per(int a,int b):a(a),b(b){}//无参构造Per(){}//运算符重载const Per opera…

MyBatis注解开发实现学生管理页面(分页pagehelper,多条件搜索,查看课程信息)

pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 …

【论文阅读】面向抽取和理解基于Transformer的自动作文评分模型的隐式评价标准(实验结果部分)

方法 结果 在这一部分&#xff0c;我们展示对于每个模型比较的聚合的统计分析当涉及到计算特征和独立的特征组&#xff08;表格1&#xff09;&#xff0c;抽取功能组和对齐重要功能组&#xff08;表格2&#xff09;&#xff0c;并且最后&#xff0c;我们提供从模型比较&#x…

【前端工程化】配置React+ts企业级代码规范及样式格式和git提交规范

目录 前言 代码规范技术栈 创建react18vite2ts项目 editorconfig统一编辑器配置 prettier自动格式化代码 eslintlint-staged检测代码 使用tsc检测类型和报错 代码提交时使用husky检测代码语法规范 代码提交时使用husky检测commit备注规范 配置commitizen方便添加commi…

VMware centos7虚拟机修改静态IP

一、修改网络适配器 1、打开 2、使用管理员权限修改 3、按照图中步骤修改为 4、设置网关为10.0.0.2后保存即可 二、修改配置文件 1、输入下面代码进入修改&#xff08;网卡这里网卡名字为ens33&#xff0c;可使用ifcfig或ip a查看&#xff09; vi /etc/sysconfig/netwo…

【Java 进阶篇】CSS 选择器详解

CSS&#xff08;层叠样式表&#xff09;是一种用于描述网页上元素样式的语言。要想有效地使用CSS&#xff0c;了解CSS选择器是至关重要的&#xff0c;因为它们允许你选择要应用样式的HTML元素。在本文中&#xff0c;我们将详细介绍CSS选择器的各种类型和用法&#xff0c;以便你…

并不止于表面理论和简单示例——《Python数据科学项目实战》

Python 现在可以说是运用最广泛的编程语言之一&#xff0c;使用 Python 的人不只局限在计算机相关专业的从业者,很多来自金融领域、医疗领域以及其他我们无法想象的领域的人,每天都在使用 Python处理各种数据、使用机器学习进行预测以及完成各种有趣的工作。 长久以来&#xff…

济南建筑模板生产厂家有哪些?

在济南地区&#xff0c;寻找一家可靠的建筑模板供应商对于建筑施工企业来说是至关重要的。在众多的厂家中&#xff0c;广西贵港市能强优品木业是济南地区建筑模板最具实力的供应商之一。他们不仅提供高质量的建筑模板&#xff0c;还能提供整车物流包运输&#xff0c;并将货物发…

android app开发环境搭建

Android是流行的移动设备原生应用开发平台&#xff0c;其支持Java语言以及Kotlin语言的开发环境&#xff0c;本文主要描述官方提供的Android studio集成开发环境搭建。 https://developer.android.google.cn/ 如上所示&#xff0c;从官方上下载最新版本的Android studio集成开…

C++ 修改文件创建时间、修改时间属性

简介 修改文件创建时间、修改时间、大小等属性。 博客 《C 获取文件创建时间、修改时间、大小等属性》分享后&#xff0c;好兄弟“古月”发来一段代码&#xff0c;说可以修改文件的创建时间等。测试了一下真可以&#xff0c;下面是运行效果和代码&#xff1a; 代码 #i…

mysql面试题35:MySQL有关权限的表有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL有关权限的表有哪些? MySQL中与权限相关的表主要包括以下几个: user表:存储MySQL用户的基本信息,包括用户名、密码等。可以使用以下命令…

用于物体识别和跟踪的下游任务自监督学习-2-背景

2.1用于现实世界应用的计算机视觉的基本概念 有许多中间步骤涉及应用计算机视觉算法来解决现实世界中的问题。机器视觉算法从光学传感器的图像采集开始,并最终解决现实世界的决策任务,如自动驾驶汽车、机器人自动化和监控。设计现代计算机视觉算法包括传感器数据编码、解码、…

Practical Memory Leak Detection using Guarded Value-Flow Analysis 论文阅读

本文于 2007 年投稿于 ACM-SIGPLAN 会议1。 概述 指针在代码编写过程中可能出现以下两种问题&#xff1a; 存在一条执行路径&#xff0c;指针未成功释放&#xff08;内存泄漏&#xff09;&#xff0c;如下面代码中注释部分所表明的&#xff1a; int foo() {int *p malloc(4 …

PointRend: 将图像分割视为渲染——PointRend:Image Segmentation as Rendering

0.摘要 我们提出了一种新的方法&#xff0c;用于高效、高质量的对象和场景图像分割。通过将经典的计算机图形学方法与像素标记任务中面临的过采样和欠采样挑战进行类比&#xff0c;我们开发了一种将图像分割视为渲染问题的独特视角。基于这个视角&#xff0c;我们提出了PointRe…

昂首资本通过套期保值,MT4和MT5这样选

对冲模式允许交易者为一项资产开立任意数量的头寸&#xff0c;但只能进行多单交易&#xff0c;无法改变开仓的成交量。 套期保值系统由MT4和MT5两款软件提供支持&#xff0c;自2016年起&#xff0c;套期保值系统由MT5取代了MT4。净额结算模式允许交易者一次只有一个金融工具的…

TensorRT的结构

Builder&#xff08;网络原数据&#xff09;&#xff1a;模型搭建的入口&#xff0c;网络的tensorRT内部表示以及可执行程序引擎都是由该对象的成员方法生成的 BuiderConfig&#xff08;网络原数据的选项&#xff09;&#xff1a;负责设置模型的一些参数&#xff0c;如是否开始…