python pytorch- TextCNN TextRNN FastText Transfermer (中英文)文本情感分类实战(附数据集,代码皆可运行)

news2025/1/9 15:27:56

python pytorch- TextCNN TextRNN FastText Transfermer 文本情感分类实战(附数据集,代码皆可运行)

注:本次实验,主要注重代码实现这些模型,博主的数据集质量较差,模型评估效果并不是十分理想,后续同学们可以自行使用自己的数据集去运行这些模型,训练自己的优质模型。数据集我会上传到我得资源当中,大家可以自行下载。

最近博主做了基于深度学习的文本情感分类的实验,在这个实验中,我们用到了四个比较热门的深度学习文本分类模型TextCNN TextRNN FastText Transfermer 。使用的是pytorch框架实现的。

在这篇博文中,博主不会介绍这些模型的数学原理,主要还是讲可运行的代码放在这篇博文里。
这篇博客分为如下几个部分

1.数据集介绍

2.数据集预处理思路简要介绍和实现代码

3.TextCNN 文本分类实战

4.TextRNN 文本分类实战

5.FastText 文本分类实战

6.Transfermer 文本分类实战

1.数据集介绍

如下是我们的数据集:

在这里插入图片描述
数据集由六个txt文件组成,如下图:
分别是三个训练集文件和三个测试集文件,三个训练集文件分别对应消极、积极、中性的三种文本数据。同理三个测试机文件也分别对应消极、积极、中性的三种文本数据。

其中每一个数据集都是一个一个的句子组成,每个句子占一行。
如下:
在这里插入图片描述
只有stopwrods.txt比较特别:
在这里插入图片描述
其实由一个个的停用词组成,每一行为一个停用词。
建议大家可以下载我得数据集,也可以在私聊我,我可以将数据集发给你们。

2.数据集预处理思路简要介绍和实现代码

(1)将句子通过jieba库进行分词操作。
(2)另外在数据处理过程中我们使用了停用词库。
(3)由于文本分词之后长度不一,但是使用的四个模型都要求长度统一的文本,所以我们对分词之后的单词列表进行调整,为了尽量不是数据丢失,我们将一个句子单词数量设定为20,对于单词小于20的句子进行补足,补‘#’单词,对于单词数量大于20的句子,我们进行裁剪,一般裁剪前20个单词。
(4)考到模型的特性,一般情况下,如果单词小于20,我们是在末尾进行‘#’补足,但是对于TextRNN,考虑到其对信息的记忆,在开头进行‘#’补足,这样,可以更多关注后续的信息。
(5)对于停用词集,我们根据数据集,也自己添加了一部分停用词。

这里我们附上我们的数据预处理代码:

import os

import jieba
import re

string = "This is a string with 12345 numbers"



path=r"D:\work\10-5\use_data"

def get_stop_words():
    file_object = open(r'D:\work\10-5\use_data\stopwords.txt',encoding='utf-8')

    stop_words = []
    for line in file_object.readlines():
        line = line[:-1]
        line = line.strip()
        stop_words.append(line)
    return stop_words
stop_words=get_stop_words()
stop_words.append('%')
stop_words.append('\n')
#print(stop_words)
def get_data():
    setences=[]
    label=[]
    setences_test=[]
    label_test=[]
    for file in os.listdir(path):
        print(file)
        if file.startswith('s')==False and 'train' in file:
           
            fp=open(path+'//'+file,encoding='utf8')
            for line in fp.readlines():
                if file.startswith('zp'):
                     label.append(0)
                if file.startswith('zs'):
                    label.append(1)
                if file.startswith('zn'):
                    label.append(2)
                line = re.sub(r'\d+', '', line)
                words=jieba.lcut(line, cut_all=False)
                words_s=[ i for i in words if i not in stop_words]
                if len(words_s)<=20:
                    for i in range(20-len(words_s)):
                        words_s=['#']+words_s
                else:
                    words_s=words_s[0:20]

            #    print(words_s)
                words_s=" ".join(words_s)
              #  print(words_s)
                setences.append(words_s)
            fp.close()
        if file.startswith('s')==False and 'test' in file:
           
            fp=open(path+'//'+file,encoding='utf8')
            for line in fp.readlines():
                if file.startswith('zp'):
                     label_test.append(0)
                if file.startswith('zs'):
                    label_test.append(1)
                if file.startswith('zn'):
                    label_test.append(2)
                line = re.sub(r'\d+', '', line)
                words=jieba.lcut(line, cut_all=False)
                words_s=[ i for i in words if i not in stop_words]
                
            #    print(words_s)
                if len(words_s)<20:
                    for i in range(20-len(words_s)):
                        words_s=['#']+words_s
                else:
                    words_s=words_s[0:20]



                
                words_s=" ".join(words_s)
                print(words_s)
                setences_test.append(words_s)
            fp.close()
    return setences,label,setences_test,label_test




3.TextCNN 文本分类实战

在这个算法中,对每个单词赋予一个随机的词向量,让后堆叠成图像那样的二维矩阵,之后使用卷积神经网络的方式,对其进行卷积操作。模型如下图:
在这里插入图片描述

模型我们就不介绍了,这里我们直接附上实现代码,并且该代码还涉及模型评估的代码:

#coding=gbk
from cgi import test
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F
from data_process import get_data
dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 3 words sentences (=sequence_length is 3)
import matplotlib.pyplot as plt

sentences,labels,setences_test,label_test=get_data()
print(sentences,labels)
#sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
#labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

embedding_size = 100
num_classes = len(set(labels))
batch_size = 10
classnum=3
sequence_length = 20
word_list = " ".join(sentences).split()
word_list2 = " ".join(setences_test).split()
vocab = list(set(word_list+word_list2))

word2idx = {w:i for i,w in enumerate(vocab)}

vocab_size = len(vocab)

def make_data(sentences, labels):
    inputs = []
    for sen in sentences:
        l=[word2idx[n] for n in sen.split()]
        if len(l)<sequence_length:
            length=len(l)

            for i in range(sequence_length-length):
                l.append(0)


            inputs.append(l)
        else:
            inputs.append(l[0:sequence_length])


    targets = []
    for out in labels:
        targets.append(out)

    return inputs, targets

input_batch, target_batch = make_data(sentences, labels)


print(input_batch, target_batch)
print("fdsfafas")
input_batch= torch.LongTensor(input_batch)
target_batch= torch.LongTensor(target_batch)

print("*"*100)
print(input_batch.size(),target_batch.size())

dataset = Data.TensorDataset(input_batch,target_batch)
loader = Data.DataLoader(dataset, batch_size, True)
epoch=100
class TextCNN(nn.Module):

    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(nn.Conv2d(1, output_channel, kernel_size=(4,embedding_size)), # inpu_channel, output_channel, 卷积核高和宽 n-gram 和 embedding_size
                                nn.ReLU(),
                                nn.MaxPool2d((2,1)))
        self.fc = nn.Linear(24,num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel,1,1]
      flatten = conved.view(batch_size, -1)# [batch_size, output_channel*1*1]
      output = self.fc(flatten)
      return output


model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
loss_list=[]
# Training
for epoch in range(epoch):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    loss_list.append(loss)
    if (epoch + 1) % 5 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

#test



input_batch, target_batch = make_data(setences_test, label_test)

print(input_batch, target_batch)
print("fdsfafas")
input_batch= torch.LongTensor(input_batch)
target_batch= torch.LongTensor(target_batch)

print("*"*100)
print(input_batch.size(),target_batch.size())

dataset = Data.TensorDataset(input_batch,target_batch)
loader = Data.DataLoader(dataset, batch_size, True)
test_loss = 0
correct = 0
total = 0
target_num = torch.zeros((1,classnum))
predict_num = torch.zeros((1,classnum))
acc_num = torch.zeros((1,classnum))
for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
   
    print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
    print(pred.argmax(1))
    print(batch_y)
    test_loss += loss
    _, predicted = torch.max(pred.data, 1)
    total += batch_y.size(0)
    correct += predicted.eq(batch_y.data).cpu().sum()
    pre_mask = torch.zeros(pred.size()).scatter_(1, predicted.cpu().view(-1, 1), 1.)
    predict_num += pre_mask.sum(0)
    tar_mask = torch.zeros(pred.size()).scatter_(1, batch_y.data.cpu().view(-1, 1), 1.)
    target_num += tar_mask.sum(0)
    acc_mask = pre_mask*tar_mask
    acc_num += acc_mask.sum(0)

recall = acc_num/target_num
precision = acc_num/predict_num
F1 = 2*recall*precision/(recall+precision)
accuracy = acc_num.sum(1)/target_num.sum(1)
recall = (recall.numpy()[0]*100).round(3)
precision = (precision.numpy()[0]*100).round(3)
F1 = (F1.numpy()[0]*100).round(3)
accuracy = (accuracy.numpy()[0]*100).round(3)
# 打印格式方便复制
print('recall'," ".join('%s' % id for id in recall))
print('precision'," ".join('%s' % id for id in precision))
print('F1'," ".join('%s' % id for id in F1))
print('accuracy',accuracy)
plt.plot(loss_list,label='TextCNN')
plt.legend()
plt.title('loss-epoch')
plt.show()

模型跑出的结果如下:
在这里插入图片描述

在这里插入图片描述

3.TextRNN 文本分类实战

在这个算法中,进行Word Embedding后,输入到双向LSTM中,然后对最后一位的输出输入到全连接层中,在对其进行softmax分类即可,模型如下图:

网络结构图如下:
在这里插入图片描述

代码如下

#coding=gbk
from cgi import test
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F
from data_process import get_data
dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 3 words sentences (=sequence_length is 3)

import matplotlib.pyplot as plt

def make_data(sentences):
    input_data = []
    input_label = []
    for sen in sentences:
        words = sen.split()
        input_data_tmp = [word2id[i] for i in words[:-1]]
        input_label_tmp = word2id[words[-1]]
        input_data.append(np.eye(vocab_size)[input_data_tmp])
        input_label.append(input_label_tmp)

    return input_data, input_label



class TextRNN(nn.Module):
    def __init__(self):
        super(TextRNN, self).__init__()
        # 每个词向量的维度是词表长度,隐藏层输出特征大小是n_hidden
        self.rnn = nn.RNN(input_size=vocab_size, hidden_size=n_hidden)
        self.fc = nn.Linear(n_hidden, vocab_size)

    def forward(self, h0, X):
        # X: [batch_size, n_step, vocab_size]
        the_input = X.transpose(0, 1)  # RNN需要的数据得一二维度转置一下
        # RNN的输入是X和
        # RNN层会返回所有x1,x2对应的输出为out,我们只取最后一个输出
        # hidden是最后一个词计算得到的隐藏状态(符号RNN的图)
   #     print("fds",the_input.size(),h0.size())

        out, hidden = self.rnn(the_input, h0)
        out = out[-1]
        res = self.fc(out)
        return res


if __name__ == '__main__':

    # 准备一些简单的数据
    sentences,labels,setences_test,label_test=get_data()
    print(sentences,labels)
    
    #sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
    #labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.
    
    for i in range(len(sentences)):
        sentences[i]=sentences[i]+' '+str(labels[i])
    for i in range(len(setences_test)):
        setences_test[i]=setences_test[i]+' '+str(label_test[i])

    embedding_size = 100
    sequence_length = 20
    num_classes = len(set(labels))
    batch_size = 10

    word_list = " ".join(sentences).split()
    word_list2 = " ".join(setences_test).split()
    word_list=['0','1','2']+word_list
    vocab = list(set(word_list+word_list2))

   
    epoch=100

    

    n_step = 20   # n_step是输入的话的x部分的长度,因为我们的话只有三个单词所以就是2
    n_hidden = 100  # 隐藏输出特征的大小


  
    word2id = {w: i for i, w in enumerate(vocab)}
    id2word = {i: w for i, w in enumerate(vocab)}


    vocab_size = len(vocab)


   
    # 构造dataset, dataloader
    input_data, input_label = make_data(sentences)
   # print( input_data, input_label)
    #for i in input_data[0:10]:
    #    print(i)
    #    print(i[0])
    #    print(len(i))

    input_data = torch.Tensor(input_data)
    input_label= torch.LongTensor(input_label)



    dataset = Data.TensorDataset(input_data, input_label)
    # 此时得到的输入数据是index形式的,不是向量形式
    dataloader = Data.DataLoader(dataset, batch_size, True)

    model = TextRNN()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    loss_list=[]
    # 训练部分
    for i in range(epoch):
        for x, y in dataloader:
            h0 = torch.zeros(1, x.shape[0], n_hidden)
           
            pred = model(h0, x)
            loss = criterion(pred, y)
            loss_list.append(loss)
            if (i + 1) % 5 == 0:
                print("epoch: ", '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

# input = [sen.split()[:2] for sen in sentences]
# # Predict
# hidden = torch.zeros(1, len(input), n_hidden)
# predict = model(hidden, input_data).data.max(1, keepdim=True)[1]
# print([sen.split()[:2] for sen in sentences], '->', [id2word[n.item()] for n in predict.squeeze()])
#test


input_data, input_label  = make_data(setences_test)



   # print( input_data, input_label)
    #for i in input_data[0:10]:
    #    print(i)
    #    print(i[0])
    #    print(len(i))

input_data = torch.Tensor(input_data)
input_label= torch.LongTensor(input_label)



dataset = Data.TensorDataset(input_data, input_label)
    # 此时得到的输入数据是index形式的,不是向量形式
dataloader = Data.DataLoader(dataset, batch_size, True)
print("fdsfafas")

classnum=3
test_loss = 0
correct = 0
total = 0
target_num =[0,0,0]
predict_num = [0,0,0]
acc_num =[0,0,0]

for x, y in dataloader:

    h0 = torch.zeros(1, x.shape[0], n_hidden)
           
    pred = model(h0, x)


    loss = criterion(pred, y)
    if (epoch + 1) % 5 == 0:
             print("epoch: ", '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

  
   
   
    for i in y:
        target_num[int(id2word[int(i)])]+=1
    

    test_loss += loss
    p=0
    for i in pred:
      
        print(i.argmax())
        index=int(i.argmax())
        if id2word[index] in ['0','1','2']:
            predict_num[int(id2word[index])]+=1
        print(id2word[index],id2word[p])
        if index==int(y[p]):
            p=p+1
            acc_num[int(id2word[index])]+=1


    print(y)

recall = [acc_num[i]/target_num[i] for i in range(3)]
precision = [acc_num[i]/predict_num[i] for i in range(3)]
F1 = [2*recall[i]*precision[i]/(recall[i]+precision[i]) for i in range(3)]
accuracy = sum(acc_num)/sum(target_num) 

# 打印格式方便复制
print('recall'," ".join('%s' % id for id in recall))
print('precision'," ".join('%s' % id for id in precision))
print('F1'," ".join('%s' % id for id in F1))
print('accuracy',accuracy)
plt.plot(loss_list,label='TextRNN')
plt.legend()
plt.title('loss-epoch')
plt.show()

评估结果:
在这里插入图片描述

在这里插入图片描述

5.FastText 文本分类实战

FastText使用x1,x2…xn表示一个ngram向量,其使用多个向量来表示一个词,然后再使用全部的ngram去预测指定的类别。
网络结构如下:
在这里插入图片描述

实现代码如下:

#coding=gbk

import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from data_process import get_data
import matplotlib.pyplot as plt
loss_list=[]
class FastText(nn.Module):
    def __init__(self, vocab, w2v_dim, classes, hidden_size):
        super(FastText, self).__init__()
        #创建embedding
        self.embed = nn.Embedding(len(vocab), w2v_dim)  #embedding初始化,需要两个参数,词典大小、词向量维度大小
        self.embed.weight.requires_grad = True #需要计算梯度,即embedding层需要被训练
        self.fc = nn.Sequential(              #序列函数
            nn.Linear(w2v_dim, hidden_size),  #这里的意思是先经过一个线性转换层
            nn.BatchNorm1d(hidden_size),      #再进入一个BatchNorm1d
            nn.ReLU(inplace=True),            #再经过Relu激活函数
            nn.Linear(hidden_size, classes)#最后再经过一个线性变换
        )
    def forward(self, x):                      
        x = self.embed(x.type(dtype=torch.LongTensor))                     #先将词id转换为对应的词向量
        out = self.fc(torch.mean(x, dim=1))   #这使用torch.mean()将向量进行平均
        return out
def train_model(net, epoch, lr, data, label):      #训练模型
    print("begin training")
    net.train()  # 将模型设置为训练模式,很重要!
    optimizer = optim.Adam(net.parameters(), lr=lr) #设置优化函数
    Loss = nn.CrossEntropyLoss()  #设置损失函数
    for i in range(epoch):  # 循环
        optimizer.zero_grad()  # 清除所有优化的梯度
        output = net(data)  # 传入数据,前向传播,得到预测结果
        loss = Loss(output, label) #计算预测值和真实值之间的差异,得到loss
        loss_list.append(loss)
        loss.backward() #loss反向传播
        optimizer.step() #优化器优化参数

        # 打印状态信息
        print("train epoch=" + str(i) + ",loss=" + str(loss.item()))
    print('Finished Training')

predict_list=[]
def model_test(net, test_data, test_label):
    net.eval()  # 将模型设置为验证模式
    correct = 0
    total = 0
    with torch.no_grad():
        outputs = net(test_data)
        # torch.max()[0]表示最大值的值,troch.max()[1]表示回最大值的每个索引
        _, predicted = torch.max(outputs.data, 1)  # 每个output是一行n列的数据,取一行中最大的值

        total += test_label.size(0)
        print(test_label)
        print(predicted)
        predict_list.append(predicted)
       # correct += (predicted == test_label).sum().item()
   
        correct += (predicted == test_label).sum().item()
        print('Accuracy: %d %%' % (100 * correct / total))


if __name__ == "__main__":
    #这里没有写具体数据的处理方法,毕竟大家所做的任务不一样


    sentences,labels,setences_test,label_test=get_data()
    print(sentences,labels)
    
    #sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
    #labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.
    
    #for i in range(len(sentences)):
    #    sentences[i]=sentences[i]+' '+str(labels[i])
    #for i in range(len(setences_test)):
    #    setences_test[i]=setences_test[i]+' '+str(label_test[i])

   
   

    word_list = " ".join(sentences).split()
    word_list2 = " ".join(setences_test).split()
    word_list=['0','1','2']+word_list
    vocab = list(set(word_list+word_list2))
    vocab_size=len(vocab)
    batch_size = 64
    epoch = 1000  # 迭代次数
    w2v_dim = 300  # 词向量维度
    lr = 0.001
    hidden_size = 128
    classes = len(set(labels))
    word2id = {w: i for i, w in enumerate(vocab)}
    id2word = {i: w for i, w in enumerate(vocab)}
    sequence_length=20

    

    def make_data(sentences, labels):
        inputs = []
        for sen in sentences:
            l=[word2id[n] for n in sen.split()]
            if len(l)<sequence_length:
                length=len(l)

                for i in range(sequence_length-length):
                    l.append(0)


                inputs.append(l)
            else:
                inputs.append(l[0:sequence_length])


        targets = []
        print("labels",labels)
        for out in labels:
            targets.append(out)

        return inputs, targets


    input_data, input_label = make_data(sentences,labels)
   # print( input_data, input_label)
    #for i in input_data[0:10]:
    #    print(i)
    #    print(i[0])
    #    print(len(i))

    input_data = torch.Tensor(input_data)
    input_label= torch.LongTensor(input_label)
    # 定义模型
    net = FastText(vocab=vocab, w2v_dim=w2v_dim, classes=classes, hidden_size=hidden_size)

    # 训练
    print("开始训练模型")
    train_model(net, epoch, lr, input_data, input_label)
    # 保存模型
    print("开始测试模型")

    

    input_data, input_label= make_data(setences_test,label_test)



       # print( input_data, input_label)
        #for i in input_data[0:10]:
        #    print(i)
        #    print(i[0])
        #    print(len(i))

    input_data = torch.Tensor(input_data)
    input_label= torch.LongTensor(input_label)
    model_test(net, input_data, input_label)
test_loss = 0
correct = 0
total = 0
target_num =[0,0,0]
predict_num = [0,0,0]
p=0
acc_num =[0,0,0]

for i in label_test:
    target_num[i]+=1

for i in predict_list[0]:
       
        print(i.argmax())
        index=int(i)
        if index in [0,1,2]:
            predict_num[index]+=1
        print(id2word[index],id2word[p])
       
        if index==label_test[p]:
           
           
            acc_num[index]+=1
        p=p+1


recall = [acc_num[i]/target_num[i] for i in range(3)]
precision = [acc_num[i]/predict_num[i] for i in range(3)]
F1 = [2*recall[i]*precision[i]/(recall[i]+precision[i]) for i in range(3)]
accuracy = sum(acc_num)/sum(target_num) 


plt.plot(loss_list,label='FastText')
plt.legend()
plt.title('loss-epoch')
plt.show()

# 打印格式方便复制
print('recall'," ".join('%s' % id for id in recall))
print('precision'," ".join('%s' % id for id in precision))
print('F1'," ".join('%s' % id for id in F1))
print('accuracy',accuracy)

评估结果:
在这里插入图片描述
在这里插入图片描述

6.Transfermer 文本分类实战

对于Transfermer算法,我们将其decoder的输入用特殊字符#代替,这样其原本的翻译模型也可以修改为分类模型了。
其网络结构图如下:
在这里插入图片描述

Transfermer的代码比较多:

#coding=gbk

from cgi import test
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

from data_process import get_data
dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 3 words sentences (=sequence_length is 3)
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps
sentencesz,labels,setences_test,label_test=get_data()
sentences_t=[]
for i in range(len(sentencesz)):
    a=[]
    sentencesz[i]=' '.join(sentencesz[i].split())
    a.append(sentencesz[i])
    a.append('#')
    a.append(str(labels[i]))
    sentences_t.append(a)


print(sentences_t)

sentences=sentences_t



word_list = " ".join(sentencesz).split()
word_list2 = " ".join(setences_test).split()
word_list=word_list
vocab = list(set(word_list+word_list2))

# Padding Should be Zero
#src_vocab = {'P' : 0, 'ich' : 1, 'mochte' : 2, 'ein' : 3, 'bier' : 4, 'cola' : 5}


src_vocab = {w: i for i, w in enumerate(vocab)}

src_vocab_size = len(src_vocab)

tgt_vocab = {'0' : 0, '1' : 1, '2' : 2, '#' : 3}

setences_test_z=[]
for i in range(len(setences_test)):
    a=[]
    setences_test[i]=' '.join(setences_test[i].split())
    a.append(setences_test[i])
    a.append('#')
    a.append(str(label_test[i]))
    setences_test_z.append(a)



idx2word = {i: w for i, w in enumerate(tgt_vocab)}


tgt_vocab_size = len(tgt_vocab)

src_len = 20 # enc_input max sequence length
tgt_len = 1 # dec_input(=dec_output) max sequence length

def make_data(sentences):
    enc_inputs, dec_inputs, dec_outputs = [], [], []
    for i in range(len(sentences)):
      enc_input = [[src_vocab[n] for n in sentences[i][0].split()]] # [[1, 2, 3, 4, 0], [1, 2, 3, 5, 0]]
      dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]] # [[6, 1, 2, 3, 4, 8], [6, 1, 2, 3, 5, 8]]
      dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]] # [[1, 2, 3, 4, 8, 7], [1, 2, 3, 5, 8, 7]]
      enc_inputs.extend(enc_input)
      dec_inputs.extend(dec_input)
      dec_outputs.extend(dec_output)

    return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)

enc_inputs, dec_inputs, dec_outputs = make_data(sentences)
enc_inputs_test, dec_inputs_test, dec_outputs_test = make_data(setences_test_z)

print("enc_inputs",enc_inputs)
print("dec_inputs",dec_inputs,)
print("dec_outputs",dec_outputs)

class MyDataSet(Data.Dataset):
  def __init__(self, enc_inputs, dec_inputs, dec_outputs):
    super(MyDataSet, self).__init__()
    self.enc_inputs = enc_inputs
    self.dec_inputs = dec_inputs
    self.dec_outputs = dec_outputs
  
  def __len__(self):
    return self.enc_inputs.shape[0]
  
  def __getitem__(self, idx):
    return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]

loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 40, True)
loader_test = Data.DataLoader(MyDataSet(enc_inputs_test, dec_inputs_test, dec_outputs_test), 1, True)

# Transformer Parameters
d_model =500   # Embedding Size
d_ff = 1000 # FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_layers = 6  # number of Encoder of Decoder Layer
n_heads = 8  # number of heads in Multi-Head Attention


#for enc_inputs, dec_inputs, dec_outputs in loader:
#     print(enc_inputs, dec_inputs, dec_outputs)


def get_sinusoid_encoding_table(n_position, d_model):
    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_model)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    return torch.FloatTensor(sinusoid_table)
def get_attn_pad_mask(seq_q, seq_k):
    '''
    seq_q: [batch_size, seq_len]
    seq_k: [batch_size, seq_len]
    seq_len could be src_len or it could be tgt_len
    seq_len in seq_q and seq_len in seq_k maybe not equal
    '''
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # [batch_size, 1, len_k], False is masked
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # [batch_size, len_q, len_k]
def get_attn_subsequence_mask(seq):
    '''
    seq: [batch_size, tgt_len]
    '''
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1) # Upper triangular matrix
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()
    return subsequence_mask
class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        '''
        Q: [batch_size, n_heads, len_q, d_k]
        K: [batch_size, n_heads, len_k, d_k]
        V: [batch_size, n_heads, len_v(=len_k), d_v]
        attn_mask: [batch_size, n_heads, seq_len, seq_len]
        '''
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k]
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True.
        
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v]
        return context, attn
class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
    def forward(self, input_Q, input_K, input_V, attn_mask):
        '''
        input_Q: [batch_size, len_q, d_model]
        input_K: [batch_size, len_k, d_model]
        input_V: [batch_size, len_v(=len_k), d_model]
        attn_mask: [batch_size, seq_len, seq_len]
        '''
        residual, batch_size = input_Q, input_Q.size(0)
        # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # Q: [batch_size, n_heads, len_q, d_k]
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # K: [batch_size, n_heads, len_k, d_k]
        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # V: [batch_size, n_heads, len_v(=len_k), d_v]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]

        # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)
        context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v]
        output = self.fc(context) # [batch_size, len_q, d_model]
        return nn.LayerNorm(d_model)(output + residual), attn
class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False)
        )
    def forward(self, inputs):
        '''
        inputs: [batch_size, seq_len, d_model]
        '''
        residual = inputs
        output = self.fc(inputs)
        return nn.LayerNorm(d_model)(output + residual) # [batch_size, seq_len, d_model]
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        '''
        enc_inputs: [batch_size, src_len, d_model]
        enc_self_attn_mask: [batch_size, src_len, src_len]
        '''
        # enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_vocab_size, d_model),freeze=True)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        '''
        word_emb = self.src_emb(enc_inputs) # [batch_size, src_len, d_model]
        pos_emb = self.pos_emb(enc_inputs) # [batch_size, src_len, d_model]
        enc_outputs = word_emb + pos_emb
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len]
        enc_self_attns = []
        for layer in self.layers:
            # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns
class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        '''
        dec_inputs: [batch_size, tgt_len, d_model]
        enc_outputs: [batch_size, src_len, d_model]
        dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
        dec_enc_attn_mask: [batch_size, tgt_len, src_len]
        '''
        # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        # dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs) # [batch_size, tgt_len, d_model]
        return dec_outputs, dec_self_attn, dec_enc_attn
class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_vocab_size, d_model),freeze=True)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs):
        '''
        dec_inputs: [batch_size, tgt_len]
        enc_intpus: [batch_size, src_len]
        enc_outputs: [batsh_size, src_len, d_model]
        '''
        word_emb = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model]
        pos_emb = self.pos_emb(dec_inputs) # [batch_size, tgt_len, d_model]
        dec_outputs = word_emb + pos_emb
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # [batch_size, tgt_len, tgt_len]
        dec_self_attn_subsequent_mask = get_attn_subsequence_mask(dec_inputs) # [batch_size, tgt_len]
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0) # [batch_size, tgt_len, tgt_len]

        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len]

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns
class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
    def forward(self, enc_inputs, dec_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, tgt_len]
        '''
        # tensor to store decoder outputs
        # outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)
        
        # enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        # dec_outpus: [batch_size, tgt_len, d_model], dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [n_layers, batch_size, tgt_len, src_len]
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
model = Transformer()
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.000008)
loss_list=[]
for epoch in range(35):
    co=0
    to=0
    for enc_inputs, dec_inputs, dec_outputs in loader:
      '''
      enc_inputs: [batch_size, src_len]
      dec_inputs: [batch_size, tgt_len]
      dec_outputs: [batch_size, tgt_len]
      '''
      # enc_inputs, dec_inputs, dec_outputs = enc_inputs.to(device), dec_inputs.to(device), dec_outputs.to(device)
      # outputs: [batch_size * tgt_len, tgt_vocab_size]
      outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
      #print(outputs.argmax(1))
      #print(dec_outputs)
      index=outputs.argmax(1)
      print(index)
      #print(dec_outputs)
     
      for i in range(len(dec_outputs)):
          if index[i]==dec_outputs[i]:
              co+=1
      
      to=to+len(index)

      loss = criterion(outputs, dec_outputs.view(-1))
      loss_list.append(loss)
     # print(outputs,dec_outputs)
   #   print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
    print("epoch is: ",epoch)
    print("accurac is: ",co/to)
enc_inputs, dec_inputs, _ = next(iter(loader))

print("test")


correct=0
total=0
for enc_inputs, dec_inputs, dec_outputs in loader_test:
      outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
      #print(outputs.argmax(1))
      #print(dec_outputs)
      index=outputs.argmax(1)
      print(index)
      #print(dec_outputs)
     
      for i in range(len(dec_outputs)):
          if index[i]==dec_outputs[i]:
              correct+=1
      
      total=total+len(index)

print( "accuracy:",correct/total)

plt.plot(loss_list,label='transfermer')
plt.legend()
plt.title('loss-epoch')
plt.show()

评估结果如下:
在这里插入图片描述

好的,这次实验,博主认为可以对于大家在学习这几个模型有着一些帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1071924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Springboot之AOP的执行顺序

AOP执行顺序验证 项目引入了依赖。自动开启了aop的配置。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId></dependency>切面上配置Order注解 切面类AopTest1&#xff0c;ord…

华为ICT——第三章图像处理基本任务

目录 1&#xff1a;数字图像处理的层次&#xff1a;&#xff08;处理-分析-理解&#xff09;顺序不能错&#xff1a; 2&#xff1a;图像处理&#xff08;图像处理过程&#xff09;&#xff1a; 3&#xff1a;图像分析&#xff08;特征提取&#xff09;&#xff1a; 4&#x…

vue3前端开发-开发环境安装篇

文章目录 1.安装nvm2.设置安装源为淘宝镜像3.通过nvm安装nodejs4. 安装pnpm4.1 安装pnpm4.2 配置 5.创建vite-vue项目6. vue3demo目录结构7. 扩展插件安装8. 用户代码片段8.1 设置8.2 快速生成代码 1.安装nvm 如果本地已经安装了nodejs&#xff0c;请先卸载。 nvm主要的作用就是…

ES系列十二、ES的scroll Api及分页实例

1.官方api 1.Scroll概念 Version&#xff1a;6.1 英文原文地址&#xff1a;Scroll 当一个搜索请求返回单页结果时&#xff0c;可以使用 scroll API 检索体积大量&#xff08;甚至全部&#xff09;结果&#xff0c;这和在传统数据库中使用游标的方式非常相似。 不要把 scroll 用…

力扣(LeetCode)2578. 最小和分割(C++)

哈希集合 请读者思考&#xff0c;num拆分成num1和num2&#xff0c;要使得num1 num2最小&#xff0c;应满足两条性质&#xff1a; num1和num2位数相同&#xff0c;或最多差一位。num1和num2应按数值从小到大在num中取数。 想到统计num的位数&#xff0c;以实现性质1的需要&a…

JavaSE的常用API学习——字符串相关

目录 一、什么是API 二、String字符串 (一)创建String对象的两种方式 1.直接赋值的内存模型 2.new的内存模型 (二)字符串之间的比较与equals 1.运算符 2.equls()方法 三、StringBuilder的用法 1.StringBuilder的构造方法 2.StringBuilder的常用成员方法 3.小练习&a…

Java中的异常处理方法

在Java开发中&#xff0c;异常处理是必不可少的一部分。良好的异常处理机制可以提高代码的可读性、可靠性&#xff0c;保证程序的稳定性。本文将深度剖析Java中的异常处理机制&#xff0c;并分享一些最佳实践方法&#xff0c;帮助您在实际项目中优雅地处理异常。 一、Java异常…

我用PYQT5做的第一个实用的上位机项目(五)

制作一个动态仪表盘。 具体过程参照前面技术储备阶段的文章&#xff1a; PYQT制作动态时钟-CSDN博客 使用PYQT5简单制作动态仪表盘-CSDN博客 仪表盘由以下部件构成&#xff1a;背景 指针 表盘 进度条&#xff08;设定值&#xff09; 遮罩 设定和显示 其中表盘、 进度条和指…

UWB PDOA定位原理

以下是笔记总结,内容不完全正确 1,什么是PDOA PDOA &#xff0c;英文全称是Phase-Difference-of-Arrival&#xff0c;信号到达相位差 PDOA定位算法的原理如下&#xff1a; UWB基站上放置两个相同且间隔d<λ/2的天线&#xff0c;UWB标签上的信号到达两个天线的相位差就在-180…

实体机 安装 centos

实体机 安装 centos 制作U盘的时候&#xff0c;使用的ultraISO 同样方法一个u盘制作的有问题&#xff0c; 另外一个制作的没有问题。 可能和选择 usb-hdd 或者 usb-hdd 有关 https://mirrors.tuna.tsinghua.edu.cn/centos/7.9.2009/isos/x86_64/ 参考文档&#xff1a; http:…

数据结构的魔法:高级算法优化实战

文章目录 数据结构与算法&#xff1a;基础知识数据结构算法 高级算法优化实战1. 数据缓存2. 哈希表优化3. 算法优化 高级算法优化的挑战结论 &#x1f389;欢迎来到数据结构学习专栏~数据结构的魔法&#xff1a;高级算法优化实战 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;…

ui设计师简历自我评价的范文

ui设计师简历自我评价的范文篇一 本人毕业于艺术设计专业&#xff0c;具有较高的艺术素养&#xff0c;平时注重设计理论知识的积累&#xff0c;并将理论应用到作品中。了解当下设计的流行趋势&#xff0c;设计注重细节、重视用户体验&#xff0c;对色彩搭配有着浓厚的兴趣&…

[经验]如何解决python环境中的版本冲突问题

总结一下最近的经验 文章目录 一.报了什么错的时候可能是版本冲突二.解决版本冲突的工作流1.pip check2.libraries.io3.查看PyPI、官方文档和GitHub issues3. StackOverflow等各种类似平台4.借助AI(如果用perplexity等联网的ai相当于在这一步综合了前面步骤) 一.报了什么错的时…

XPath在数据采集中的运用

在进行数据采集和信息提取的过程中&#xff0c;XPath是一种非常强大且灵活的工具。它可以在HTML或XML文档中定位和提取特定的数据&#xff0c;为数据分析和应用提供了良好的基础。本文将介绍XPath的基本概念和语法&#xff0c;并分享一些实际操作&#xff0c;帮助您充分了解XPa…

web3.0时代分布式网络协议的异同

Web3.0时代标志着分布式网络协议的兴起&#xff0c;其中IPFS&#xff08;InterPlanetary File System&#xff09;和NDN&#xff08;Named Data Networking&#xff09;是备受瞩目的项目。尽管它们都属于分布式网络协议领域&#xff0c;但在多个方面存在显著区别。以下是IPFS和…

Elasticsearch:使用 huggingface 模型的 NLP 文本搜索

本博文使用由 Elastic 博客 title 组成的简单数据集在 Elasticsearch 中实现 NLP 文本搜索。你将为博客文档建立索引&#xff0c;并使用摄取管道生成文本嵌入。 通过使用 NLP 模型&#xff0c;你将使用自然语言在博客文档上查询文档。 安装 Elasticsearch 及 Kibana 如果你还没…

如何做好互联网产品需求分析?看这里!

文章目录 &#x1f31f;需求分析&#x1f34a;领域知识分析&#x1f34a;技术知识分析&#x1f389;人工智能技术的基本原理&#x1f389;开发工具和组件库&#x1f389;数据处理和模型训练&#x1f389;代码库和技术标准 &#x1f34a;数据分析&#x1f389;准备数据&#x1f…

途虎养车上市、京东养车“震虎”,如何突围汽车后市场?

“汽车后市场第一股”终于来了&#xff01; 赶在十一黄金周之前&#xff0c;途虎养车股份有限公司(09690.HK&#xff0c;下称“途虎养车”)于9月26日挂牌港交所&#xff0c;开盘价为28港元/股&#xff0c;与发行价持平&#xff1b;IPO首日报收29.50港元/股&#xff0c;涨幅5.3…

【图像处理GUI】图像颜色过滤、颜色强调、反转颜色等(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Tomcat历史版本下载地址(Tomcat7或更早)

官网地址直达 随便选择一个版本 点击找到自己想要的版本下载就可以了&#xff01;