课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》

news2025/1/17 15:45:56

一、简介

  抗差自适应滤波:利用等价权函数自适应因子合理的分配信息,有效地滤除钻具振动对动态姿态测量的影响。、
  针对导向钻井工具动态测量受钻具振动的影响而导致测量不准确的问题,提出一种抗差自适应滤波的动态空间姿态测量方法。通过分析钻具振动对姿态测量的影响,并吸收抗差估计和自适应滤波的优点,利用抗差等价权矩阵自适应的确定量测信息,通过自适应因子调整状态模型信息对状态参数的整体贡献,从而消除钻具振动对动态姿态测量的影响,获得实时性强、精度高的姿态参数,提高钻井效率,降低钻井风险。
  在实际钻井过程中,钻头切削岩层、钻柱与井壁的碰撞等会使钻具产生横向振动、纵向振动和扭转振动等,这些振动严重的影响了测量传感器输出信号的正确性。
  抗差自适应滤波的基本思想是:当观测值存在异常时,对观测值采用抗差估计原则,能够控制观测异常的影响;当动力学模型存在异常误差时,将动力学模型信息作为一个整体,采用统一的自适应因子调整动力学模型信息对状态参数的整体贡献。

二、测量系统建模

  方位角 ψ \psi ψ为磁北方向沿逆时针方向到Z 轴在水平面的投影间的夹角,其范围在0°~360°之间,井斜角 θ \theta θ为钻进轴Z 轴与水平面所成的夹角,规定向下为正,反之为负,其范围为-90°~90°,工具面向角 γ \gamma γ 则为钻孔横截面内由钻孔高边到Y 轴所成的角度,范围在0°~360°之间。这样,我们就准确的定义了井下钻具的方位角 ψ \psi ψ 、井斜角 θ \theta θ 和工具面向角 γ \gamma γ ,且角度的正向都符合右手系原则。
在这里插入图片描述
  加速度计和磁通门安装如下:
在这里插入图片描述
在这里插入图片描述
  根据上述理论,建立导向钻井工具姿态测量的动
态数学模型,给出状态方程和量测方程: x k ^ = Φ k , k − 1 x k − 1 + w k \hat{x_k} = \Phi_{k,k-1}x_{k-1}+w_{k} xk^=Φk,k1xk1+wk
   x k x_k xk x k − 1 x_{k-1} xk1分别为 t k t_k tk t k − 1 t_{k-1} tk1时刻的n 维状态参数向量, Φ k , k − 1 \Phi_{k,k-1} Φk,k1为n× n维状态转移矩阵; w k w_k wk 为p 维动力学模型误差向量,其数学期望为0,协方差矩阵为: ∑ w k w i = { ∑ w k , k = i 0 , k ≠ i \sum_{wkwi}= \begin{cases}\sum_{wk},\quad &k=i\\0,\quad &k\neq i\end{cases} wkwi={wk,0,k=ik=i
   w k wk wk为高斯白噪声序列。
  设 t k t_k tk时刻的量测方程为 y k = H k x k + v k y_k=H_kx_k+v_k yk=Hkxk+vk
   y k y_k yk t k t_k tk时刻的m维观测向量; H k H_k Hk为m× n维测量矩阵,也称为观测矩阵; v k v_k vk为m维观测误差向量,其数学期望为0,协方差矩阵为 ∑ v k v i = { ∑ v k , k = i 0 , k ≠ i \sum_{vkvi}= \begin{cases}\sum_{vk},\quad &k=i\\0,\quad &k\neq i\end{cases} vkvi={vk,0,k=ik=i
   v k v_k vk为高斯白噪声序列。在 i = k i=k i=k时, w k w_k wk v k v_k vk的协方差矩阵分别为 ∑ w k \sum_{wk} wk ∑ v k \sum_{vk} vk,这里 w k w_k wk, w i w_i wi, w k w_k wk, v i v_i vi互不相关。
  状态向量为: X = [ ψ , θ , γ ] T X=\begin{bmatrix}\psi,\theta,\gamma\end{bmatrix}^T X=[ψ,θ,γ]T,表明直接将钻具姿态参数作为状态向量,而
非姿态误差作为状态。

三、动态姿态测量

在这里插入图片描述
   X ‾ k = Φ k , k − 1 X k − 1 ^ \overline{X}_{k} = \Phi_{k,k-1}\hat{X_{k-1}} Xk=Φk,k1Xk1^为系统的状态预测方程。 X ‾ k \overline{X}_{k} Xk t k t_k tk的状态预测方程, X k − 1 ^ \hat{X_{k-1}} Xk1^ t k − 1 t_{k-1} tk1为状态估计向量。设状态预测向量 X ‾ k \overline{X}_k Xk的误差方程为: V X ‾ k = X ^ k − X ‾ k = X ^ k − Φ k , k − 1 X ^ k − 1 V_{\overline{X}_k} = \hat{X}_k-\overline{X}_k=\hat{X}_k-\Phi_{k,k-1}\hat{X}_{k-1} VXk=X^kXk=X^kΦk,k1X^k1
   V X ‾ k V_{\overline{X}_k} VXk t k t_k tk时刻状态预测向量 X ^ k \hat{X}_k X^k的残差向量。
  残差向量和新息向量(也称为预测残差向量)分别为:
V k = H k X ^ k − Y k V_k=H_k\hat{X}_k-Y_k Vk=HkX^kYk V ‾ k = H k X ‾ k − Y k \overline{V}_k=H_k\overline{X}_k-Y_k Vk=HkXkYk
   V k V_k Vk V ‾ k \overline{V}_k Vk的协方差矩阵为: ∑ V k = ∑ k − H k ∑ X ^ k H k T \sum_{V_k} = \sum_{k}-H_k\sum_{\hat{X}_k}H^T_k Vk=kHkX^kHkT ∑ V ‾ k = ∑ k + H k ∑ V ‾ k H k T \sum_{\overline{V}_k} = \sum_{k}+H_k\sum_{\overline{V}_k}H^T_k Vk=k+HkVkHkT
  合理地选择自适应因子不但能够自适应地平衡动力学模型预测信息与量测信息的权比,而且能够控制动力学模型扰动异常对滤波解的影响。基于预测残差误差判别统计量的抗差自适应因子函数为:在这里插入图片描述
  等价权矩阵为:在这里插入图片描述

  上式中, P ‾ k \overline{P}_k Pk为观测向量的等价权矩阵, P k = ∑ k − 1 {P}_k=\sum_{k}^{-1} Pk=k1, P X ‾ k = ∑ X ‾ k − 1 P_{\overline{X}_k}=\sum_{\overline{X}_k}^{-1} PXk=Xk1
α k \alpha_k αk ≤1 ,其它符号意义同前。
在这里插入图片描述
K k = ( H k T P ‾ k H k + α k P X ‾ k ) − 1 H k T P ‾ k K_k=(H^T_k\overline{P}_kH_k+\alpha_kP_{\overline{X}_k})^{-1}H_k^T\overline{P}_k Kk=(HkTPkHk+αkPXk)1HkTPk在这里插入图片描述
  式中: K k K_k Kk 为增益矩阵,根据矩阵恒等式,可表示为: K k = α k P X ‾ k H k T ( H k α k P X ‾ k H k T + P ‾ k ) − 1 K_k=\alpha_kP_{\overline{X}_k}H_k^T(H_k\alpha_kP_{\overline{X}_k}H_k^T+\overline{P}_k)^{-1} Kk=αkPXkHkT(HkαkPXkHkT+Pk)1
  对量测信息采用抗差估计,自适应的确定观测噪声协方差矩阵,并利用自适应因子调节状态噪声的协方差矩阵,因此,可以有效的控制量测异常和动态模型噪声异常对空间状态参数估值的影响。

四、实验结果

  实验室地理条件为北纬34.24°,东经108.99°,地球自转角速度为15 (°)/h,磁倾角为55.4°,磁场强度为52.5 T,地球重力加速度为9.8 m/s2。在实验室条件下,根据测斜校验装置测量得到一组理想的实验数据。

五、往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1070338.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kubernetes 加入主节点报错

现象 原因: 之前已经加入过一次 解决方案 [rootk8s-node01 k8s_images]# kubeadm reset [reset] WARNING: Changes made to this host by kubeadm init or kubeadm join will be reverted. [reset] Are you sure you want to proceed? [y/N]: y

基于Springboot实现校园新闻网站管理系统演示【项目源码+论文说明】

基于Springboot实现校园新闻网站管理系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个校园新闻网站 ,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将论述校…

苹果ios打包签名ipa文件应用app的验证的证书是怎么授信的原理是什么?

苹果打包应用的证书依靠的是公钥基础设施(Public Key Infrastructure,PKI)原理。 首先咱们要知道苹果的验证是基于PKI系统,PKI是一套基于非对称加密算法的加密体系,通过证书来验证和确保通信双方的身份和数据的完整性…

c语言进阶部分详解(详细解析字符串常用函数,并进行模拟实现(下))

上篇文章介绍了一些常用的字符串函数,大家可以跳转过去浏览一下:c语言进阶部分详解(详细解析字符串常用函数,并进行模拟实现(上))_总之就是非常唔姆的博客-CSDN博客 今天接着来介绍一些&#x…

scala数组函数合集

目录 1. 添加类函数 2.生成类函数 3.删除类函数 4.查找类函数 5.统计类函数 6.修改类函数 7.判断类函数 8.获取集合元素 9.集合操作类函数 10.转换类函数 11.工具类函数 12.集合内与集合间计算函数 在 scala 中Array数组是一种可变的、可索引的数据集合 创建数组…

C/C++ 进程间通信system V IPC对象超详细讲解(系统性学习day9)

目录 前言 一、system V IPC对象图解 1.流程图解: ​编辑 2.查看linux内核中的ipc对象: 二、消息队列 1.消息队列的原理 2.消息队列相关的API 2.1 获取或创建消息队列(msgget) 实例代码如下: 2.2 发送消息到消…

关于Jupyter markdown的使用

一级标题 #空格 标题1 二级标题 ## 空格 标题2 三级标题 ###空格 标题3 无序; 有序: 数学符号:

MySQL:主从复制-基础复制(6)

环境 主服务器 192.168.254.1 从服务器(1)192.168.254.2 从服务器(2)192.168.253.3 我在主服务器上执行的操作会同步至从服务器 主服务器 yum -y install ntp 我们去配置ntp是需要让从服务器和我们主服务器时间同步 sed -i /…

1.Linux入门基本指令

个人主页:Lei宝啊 愿所有美好如期而遇 目录 01.ls指令 02.pwd指令 03.cd指令 04.touch指令 05.mkdir指令(重要) 06.rmdir&&rm指令(重要) 07.man指令(重要) 08.cp指令(重要) 09.mv指令(重要) 10.cat指令 nano指令 echo指令 输出重定向 追加重…

day25--JS进阶(递归函数,深浅拷贝,异常处理,改变this指向,防抖及节流)

目录 浅拷贝 1.拷贝对象①Object.assgin() ②展开运算符newObj {...obj}拷贝对象 2.拷贝数组 ①Array.prototype.concat() ② newArr [...arr] 深拷贝 1.通过递归实现深拷贝 2.lodash/cloneDeep实现 3.通过JSON.stringify()实现 异常处理 throw抛异常 try/catch捕获…

强化学习------DQN算法

简介 DQN,即深度Q网络(Deep Q-network),是指基于深度学习的Q-Learing算法。Q-Learing算法维护一个Q-table,使用表格存储每个状态s下采取动作a获得的奖励,即状态-价值函数Q(s,a),这种算法存在很…

数据结构:链式二叉树

上一章讲了堆,堆是完全二叉树的顺序存储结构,本章将要全面讲解一下二叉树的链式存储结构即链式二叉树 我们已经学习了二叉树的概念和性质了,本章重点学习二叉树相关操作,可以更好的理解分治算法思想;也需要对递归有更深次的理解. 其实普通的链式二叉树的增删查改没有什么意义,…

COLLABORATIVE DESIGNER FOR SOLIDWORKS® 新功能

共享和标注 优点:收件人在浏览器中访问共享文 件,无需安装3DEXPERIENCE 平台应用程序。 • 与 SOLIDWORKS 中来自您组织内部或外部的任何人无缝 共享您的设计。 • 直接将评论和标注附加到您的设计作品中,便于立即获得 反馈。 支持 SOLIDWO…

深入理解强化学习——强化学习的基础知识

分类目录:《深入理解强化学习》总目录 在机器学习领域,有一类任务和人的选择很相似,即序贯决策(Sequential Decision Making)任务。决策和预测任务不同,决策往往会带来“后果”,因此决策者需要为…

Centos7安装MongoDB7.xxNoSQL数据库|设置开机启动(骨灰级+保姆级)

一: mongodb下载 MongoDB 社区免费下载版 MongoDB社区下载版 [rootwww tools]# wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-7.1.0-rc4.tgz 二: 解压到指定目录 [rootwww tools]# mkdir -p /usr/local/mongodb [rootwww tools]# tar -zxvf mongodb-…

Linux目录和文件查看命令

一、Linux 的目录结构 Linux 的目录结构是一个树状结构,以根目录(/)为起点,以下是常见的 Linux 目录结构的主要内容: / 根路径 ├── bin: 存放系统指令(命令),如ls、cp、mv等&…

ARM-流水灯

.text .global _start _start: 1、设置GPIOE寄存器的时钟使能 RCC_MP_AHB$ENSETR[4]->1 0x50000a28LDR R0,0X50000A28 LDR R1,[R0] 从R0起始地址的4字节数据取出放在R1 ORR R1,R1,#(0X3<<4) 第4位设置为1 STR R1,[R0] 写回2、设置PE10、PE8、PF10管脚为输出模式 …

Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测

作者&#xff1a;Bahubali Shetti DevOps 和 SRE 团队正在改变软件开发的流程。 DevOps 工程师专注于高效的软件应用程序和服务交付&#xff0c;而 SRE 团队是确保可靠性、可扩展性和性能的关键。 这些团队必须依赖全栈可观察性解决方案&#xff0c;使他们能够管理和监控系统&a…

学习记忆——数学篇——案例——算术——记忆100内质数

文章目录 质数表歌诀记忆法100以内的质数歌谣质数口决一百以内质数口诀100以内素数歌 规律记忆法100以内6的倍数前、后位置上的两个数&#xff0c;只要不是5或7的倍数&#xff0c;就一定是质数个数没有用该数除以包括7在内的质数 分类记忆法数字编码法谐音记忆法 100以内的质数…

Matlab随机变量的数字特征

目录 1、均值&#xff08;数学期望&#xff09; 2、中位数 3、几何平均数 4、调和平均数 5、数据排序 6、众数 7、极差&#xff08;最大值和最小值之差&#xff09; 8、方差与均方差&#xff08;标准差&#xff09; 9、变异系数 10、常见分布的期望与方差的计算 11、协方…