第五课 树与图

news2025/1/11 18:30:46

文章目录

  • 第五课 树与图
    • lc94.二叉树的中序遍历--简单
      • 题目描述
      • 代码展示
    • lc589.N叉树的层序遍历--中等
      • 题目描述
      • 代码展示
    • lc297.二叉树的序列化和反序列化--困难
      • 题目描述
      • 代码展示
    • lc105.从前序与中序遍历序列构造二叉树--中等
      • 题目描述
      • 代码展示
    • lc106.从中序与后序遍历序列构造二叉树--中等
      • 题目描述
      • 代码展示
    • lc236.二叉树的最近公共祖先(LCA)--中等
      • 题目描述
      • 代码展示
    • lc207.课程表--中等
      • 题目描述
      • 代码展示
    • lc210.课程表II--中等
      • 题目描述
      • 代码展示
    • lc684.冗余连接--中等
      • 题目描述
      • 代码展示

第五课 树与图

lc94.二叉树的中序遍历–简单

题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历

示例 1:

img

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

代码展示

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void inorder(TreeNode* root, vector<int>& res) {
        if (!root) {
            return;
        }
        inorder(root->left, res);
        res.push_back(root->val);
        inorder(root->right, res);
    }
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        inorder(root, res);
        return res;
    }
};

lc589.N叉树的层序遍历–中等

题目描述

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。

示例 1:

img

输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]

示例 2:

img

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

提示:

  • 树的高度不会超过 1000
  • 树的节点总数在 [0, 10^4] 之间

代码展示

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:     //广度优先搜索
    vector<vector<int>> levelOrder(Node* root) {
        if (!root) {
            return {};
        }

        vector<vector<int>> ans;
        queue<Node*> q;
        q.push(root);

        while (!q.empty()) {
            int cnt = q.size();
            vector<int> level;
            for (int i = 0; i < cnt; ++i) {
                Node* cur = q.front();
                q.pop();
                level.push_back(cur->val);
                for (Node* child: cur->children) {
                    q.push(child);
                }
            }
            ans.push_back(move(level));
        }

        return ans;
    }
};

lc297.二叉树的序列化和反序列化–困难

题目描述

序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也可以通过网络传输到另一个计算机环境,采取相反方式重构得到原数据。

请设计一个算法来实现二叉树的序列化与反序列化。这里不限定你的序列 / 反序列化算法执行逻辑,你只需要保证一个二叉树可以被序列化为一个字符串并且将这个字符串反序列化为原始的树结构。

提示: 输入输出格式与 LeetCode 目前使用的方式一致,详情请参阅 LeetCode 序列化二叉树的格式。你并非必须采取这种方式,你也可以采用其他的方法解决这个问题。

示例 1:

img

输入:root = [1,2,3,null,null,4,5]
输出:[1,2,3,null,null,4,5]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:

输入:root = [1,2]
输出:[1,2]

提示:

  • 树中结点数在范围 [0, 104]
  • -1000 <= Node.val <= 1000

代码展示

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Codec {
public:
    void rserialize(TreeNode* root, string& str) {
        if (root == nullptr) {
            str += "None,";
        } else {
            str += to_string(root->val) + ",";
            rserialize(root->left, str);
            rserialize(root->right, str);
        }
    }

    string serialize(TreeNode* root) {
        string ret;
        rserialize(root, ret);
        return ret;
    }

    TreeNode* rdeserialize(list<string>& dataArray) {
        if (dataArray.front() == "None") {
            dataArray.erase(dataArray.begin());
            return nullptr;
        }

        TreeNode* root = new TreeNode(stoi(dataArray.front()));
        dataArray.erase(dataArray.begin());
        root->left = rdeserialize(dataArray);
        root->right = rdeserialize(dataArray);
        return root;
    }

    TreeNode* deserialize(string data) {
        list<string> dataArray;
        string str;
        for (auto& ch : data) {
            if (ch == ',') {
                dataArray.push_back(str);
                str.clear();
            } else {
                str.push_back(ch);
            }
        }
        if (!str.empty()) {
            dataArray.push_back(str);
            str.clear();
        }
        return rdeserialize(dataArray);
    }
};

// Your Codec object will be instantiated and called as such:
// Codec ser, deser;
// TreeNode* ans = deser.deserialize(ser.serialize(root));

lc105.从前序与中序遍历序列构造二叉树–中等

题目描述

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:

img

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

提示:

  • 1 <= preorder.length <= 3000
  • inorder.length == preorder.length
  • -3000 <= preorder[i], inorder[i] <= 3000
  • preorderinorder无重复 元素
  • inorder 均出现在 preorder
  • preorder 保证 为二叉树的前序遍历序列
  • inorder 保证 为二叉树的中序遍历序列

代码展示

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
private:     
    unordered_map<int, int> index;

public:       //递归
    TreeNode* myBuildTree(const vector<int>& preorder, const vector<int>& inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
        if (preorder_left > preorder_right) {
            return nullptr;
        }
        
        // 前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 在中序遍历中定位根节点
        int inorder_root = index[preorder[preorder_root]];
        
        // 先把根节点建立出来
        TreeNode* root = new TreeNode(preorder[preorder_root]);
        // 得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;
        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root->left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root->right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        int n = preorder.size();
        // 构造哈希映射,帮助我们快速定位根节点
        for (int i = 0; i < n; ++i) {
            index[inorder[i]] = i;
        }
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:       //迭代
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (!preorder.size()) {
            return nullptr;
        }
        TreeNode* root = new TreeNode(preorder[0]);
        stack<TreeNode*> stk;
        stk.push(root);
        int inorderIndex = 0;
        for (int i = 1; i < preorder.size(); ++i) {
            int preorderVal = preorder[i];
            TreeNode* node = stk.top();
            if (node->val != inorder[inorderIndex]) {
                node->left = new TreeNode(preorderVal);
                stk.push(node->left);
            }
            else {
                while (!stk.empty() && stk.top()->val == inorder[inorderIndex]) {
                    node = stk.top();
                    stk.pop();
                    ++inorderIndex;
                }
                node->right = new TreeNode(preorderVal);
                stk.push(node->right);
            }
        }
        return root;
    }
};

lc106.从中序与后序遍历序列构造二叉树–中等

题目描述

给定两个整数数组 inorderpostorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树

示例 1:

img

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

示例 2:

输入:inorder = [-1], postorder = [-1]
输出:[-1]

提示:

  • 1 <= inorder.length <= 3000
  • postorder.length == inorder.length
  • -3000 <= inorder[i], postorder[i] <= 3000
  • inorderpostorder 都由 不同 的值组成
  • postorder 中每一个值都在 inorder
  • inorder 保证是树的中序遍历
  • postorder 保证是树的后序遍历

代码展示

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    int post_idx;
    unordered_map<int, int> idx_map;
public:     //递归
    TreeNode* helper(int in_left, int in_right, vector<int>& inorder, vector<int>& postorder){
        // 如果这里没有节点构造二叉树了,就结束
        if (in_left > in_right) {
            return nullptr;
        }

        // 选择 post_idx 位置的元素作为当前子树根节点
        int root_val = postorder[post_idx];
        TreeNode* root = new TreeNode(root_val);

        // 根据 root 所在位置分成左右两棵子树
        int index = idx_map[root_val];

        // 下标减一
        post_idx--;
        // 构造右子树
        root->right = helper(index + 1, in_right, inorder, postorder);
        // 构造左子树
        root->left = helper(in_left, index - 1, inorder, postorder);
        return root;
    }
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        // 从后序遍历的最后一个元素开始
        post_idx = (int)postorder.size() - 1;

        // 建立(元素,下标)键值对的哈希表
        int idx = 0;
        for (auto& val : inorder) {
            idx_map[val] = idx++;
        }
        return helper(0, (int)inorder.size() - 1, inorder, postorder);
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:        //迭代
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) {
            return nullptr;
        }
        auto root = new TreeNode(postorder[postorder.size() - 1]);
        auto s = stack<TreeNode*>();
        s.push(root);
        int inorderIndex = inorder.size() - 1;
        for (int i = int(postorder.size()) - 2; i >= 0; i--) {
            int postorderVal = postorder[i];
            auto node = s.top();
            if (node->val != inorder[inorderIndex]) {
                node->right = new TreeNode(postorderVal);
                s.push(node->right);
            } else {
                while (!s.empty() && s.top()->val == inorder[inorderIndex]) {
                    node = s.top();
                    s.pop();
                    inorderIndex--;
                }
                node->left = new TreeNode(postorderVal);
                s.push(node->left);
            }
        }
        return root;
    }
};

lc236.二叉树的最近公共祖先(LCA)–中等

题目描述

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:

img

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

img

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

提示:

  • 树中节点数目在范围 [2, 105] 内。
  • -109 <= Node.val <= 109
  • 所有 Node.val 互不相同
  • p != q
  • pq 均存在于给定的二叉树中。

代码展示

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:        //递归
    TreeNode* ans;
    bool dfs(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr) return false;
        bool lson = dfs(root->left, p, q);
        bool rson = dfs(root->right, p, q);
        if ((lson && rson) || ((root->val == p->val || root->val == q->val) && (lson || rson))) {
            ans = root;
        } 
        return lson || rson || (root->val == p->val || root->val == q->val);
    }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        dfs(root, p, q);
        return ans;
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:        //存储父节点
    unordered_map<int, TreeNode*> fa;
    unordered_map<int, bool> vis;
    void dfs(TreeNode* root){
        if (root->left != nullptr) {
            fa[root->left->val] = root;
            dfs(root->left);
        }
        if (root->right != nullptr) {
            fa[root->right->val] = root;
            dfs(root->right);
        }
    }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        fa[root->val] = nullptr;
        dfs(root);
        while (p != nullptr) {
            vis[p->val] = true;
            p = fa[p->val];
        }
        while (q != nullptr) {
            if (vis[q->val]) return q;
            q = fa[q->val];
        }
        return nullptr;
    }
};

image-20231007134941860

image-20231007134949007

image-20231007135002466

image-20231007135017309

lc207.课程表–中等

题目描述

你这个学期必须选修 numCourses 门课程,记为 0numCourses - 1

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai必须 先学习课程 bi

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。

示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。

提示:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • prerequisites[i] 中的所有课程对 互不相同

代码展示

class Solution {
private:
    vector<vector<int>> edges;
    vector<int> visited;
    bool valid = true;

public:       //深度优先搜索
    void dfs(int u) {
        visited[u] = 1;
        for (int v: edges[u]) {
            if (visited[v] == 0) {
                dfs(v);
                if (!valid) {
                    return;
                }
            }
            else if (visited[v] == 1) {
                valid = false;
                return;
            }
        }
        visited[u] = 2;
    }

    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        edges.resize(numCourses);
        visited.resize(numCourses);
        for (const auto& info: prerequisites) {
            edges[info[1]].push_back(info[0]);
        }
        for (int i = 0; i < numCourses && valid; ++i) {
            if (!visited[i]) {
                dfs(i);
            }
        }
        return valid;
    }
};
class Solution {
private:
    vector<vector<int>> edges;
    vector<int> indeg;

public:       //广度优先搜索
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        edges.resize(numCourses);
        indeg.resize(numCourses);
        for (const auto& info: prerequisites) {
            edges[info[1]].push_back(info[0]);
            ++indeg[info[0]];
        }

        queue<int> q;
        for (int i = 0; i < numCourses; ++i) {
            if (indeg[i] == 0) {
                q.push(i);
            }
        }

        int visited = 0;
        while (!q.empty()) {
            ++visited;
            int u = q.front();
            q.pop();
            for (int v: edges[u]) {
                --indeg[v];
                if (indeg[v] == 0) {
                    q.push(v);
                }
            }
        }

        return visited == numCourses;
    }
};

lc210.课程表II–中等

题目描述

现在你总共有 numCourses 门课需要选,记为 0numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai必须 先选修 bi

  • 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1]

返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。

示例 2:

输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。

示例 3:

输入:numCourses = 1, prerequisites = []
输出:[0]

提示:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= numCourses * (numCourses - 1)
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • ai != bi
  • 所有[ai, bi] 互不相同

代码展示

class Solution {
private:
    // 存储有向图
    vector<vector<int>> edges;
    // 标记每个节点的状态:0=未搜索,1=搜索中,2=已完成
    vector<int> visited;
    // 用数组来模拟栈,下标 0 为栈底,n-1 为栈顶
    vector<int> result;
    // 判断有向图中是否有环
    bool valid = true;

public:          //深度优先搜索
    void dfs(int u) {
        // 将节点标记为「搜索中」
        visited[u] = 1;
        // 搜索其相邻节点
        // 只要发现有环,立刻停止搜索
        for (int v: edges[u]) {
            // 如果「未搜索」那么搜索相邻节点
            if (visited[v] == 0) {
                dfs(v);
                if (!valid) {
                    return;
                }
            }
            // 如果「搜索中」说明找到了环
            else if (visited[v] == 1) {
                valid = false;
                return;
            }
        }
        // 将节点标记为「已完成」
        visited[u] = 2;
        // 将节点入栈
        result.push_back(u);
    }

    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
        edges.resize(numCourses);
        visited.resize(numCourses);
        for (const auto& info: prerequisites) {
            edges[info[1]].push_back(info[0]);
        }
        // 每次挑选一个「未搜索」的节点,开始进行深度优先搜索
        for (int i = 0; i < numCourses && valid; ++i) {
            if (!visited[i]) {
                dfs(i);
            }
        }
        if (!valid) {
            return {};
        }
        // 如果没有环,那么就有拓扑排序
        // 注意下标 0 为栈底,因此需要将数组反序输出
        reverse(result.begin(), result.end());
        return result;
    }
};
class Solution {
private:
    // 存储有向图
    vector<vector<int>> edges;
    // 存储每个节点的入度
    vector<int> indeg;
    // 存储答案
    vector<int> result;

public:         //广度优先搜索
    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
        edges.resize(numCourses);
        indeg.resize(numCourses);
        for (const auto& info: prerequisites) {
            edges[info[1]].push_back(info[0]);
            ++indeg[info[0]];
        }

        queue<int> q;
        // 将所有入度为 0 的节点放入队列中
        for (int i = 0; i < numCourses; ++i) {
            if (indeg[i] == 0) {
                q.push(i);
            }
        }

        while (!q.empty()) {
            // 从队首取出一个节点
            int u = q.front();
            q.pop();
            // 放入答案中
            result.push_back(u);
            for (int v: edges[u]) {
                --indeg[v];
                // 如果相邻节点 v 的入度为 0,就可以选 v 对应的课程了
                if (indeg[v] == 0) {
                    q.push(v);
                }
            }
        }

        if (result.size() != numCourses) {
            return {};
        }
        return result;
    }
};

lc684.冗余连接–中等

题目描述

树可以看成是一个连通且 无环无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edgesedges[i] = [ai, bi] 表示图中在 aibi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

img

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

img

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

提示:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的

代码展示

class Solution {
public:        //并查集
    int Find(vector<int>& parent, int index) {
        if (parent[index] != index) {
            parent[index] = Find(parent, parent[index]);
        }
        return parent[index];
    }

    void Union(vector<int>& parent, int index1, int index2) {
        parent[Find(parent, index1)] = Find(parent, index2);
    }

    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        int n = edges.size();
        vector<int> parent(n + 1);
        for (int i = 1; i <= n; ++i) {
            parent[i] = i;
        }
        for (auto& edge: edges) {
            int node1 = edge[0], node2 = edge[1];
            if (Find(parent, node1) != Find(parent, node2)) {
                Union(parent, node1, node2);
            } else {
                return edge;
            }
        }
        return vector<int>{};
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1065938.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript入门——基础知识(3)

一、运算符 1.1 赋值运算符 目标&#xff1a;能够通过使用赋值运算符简化代码 赋值运算符&#xff1a;对变量进行赋值的运算符 将等号右边的值赋予给左边&#xff0c;要求左边必须是一个容器其他赋值运算符&#xff1a; -*/%使用这些运算符可以在对变量赋值时进行快速操作 例…

基于vue的MOBA类游戏攻略分享平台springboot23

大家好✌&#xff01;我是CZ淡陌。一名专注以理论为基础实战为主的技术博主&#xff0c;将再这里为大家分享优质的实战项目&#xff0c;本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路…

PHP 个人愿望众筹网站系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 个人愿望众筹网站系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 php 个人愿望众筹网站 代码 https://download.csdn.net/download/qq_41221322/8…

从一坨代码说起

一、前言 下图所示这一坨代码是为了生成HTML格式邮件正文内容&#xff0c;如果邮件内容要稍微调整一下&#xff0c;这种代码怎么维护&#xff1f; 好吧&#xff0c;其实这是一篇与邮件有关的文章&#xff0c;SMTP发送邮件 介绍了邮件发送各种方式及SMTP各种端口&#xff0c;从…

回顾C++

大一的时候学过C&#xff0c;当时学得也不深&#xff0c;考试也是糊弄过去的&#xff0c;最近刷力扣的时候&#xff0c;决定一边刷题&#xff0c;一边复习和学习C&#xff0c;在此记录一些C的知识点。反正遇到一点就记录一点&#xff0c;会一直更新。

如何清理C盘

当前最棘手的问题是C盘满了&#xff0c;如何清理成了一个大问题&#xff0c;在本篇文章中我将记录我在清理c盘空间过程中的探索。 2023-10-06探索无果&#xff0c;记录于此。

浪涌保护器的P数是什么,选型浪涌保护器注意事项

浪涌保护器是一种用于保护电气设备免受雷电或其他瞬态过电压影响的装置&#xff0c;它可以将过高的电压限制在安全的范围内&#xff0c;并将多余的电流导入地线&#xff0c;从而避免设备损坏。浪涌保护器的P数是指它的保护模式&#xff0c;也就是它可以在哪些线路之间提供保护。…

xxl-job使用(小白也看得懂)

分布式任务调度 在微服务架构体系中&#xff0c;服务之间通过网络交互来完成业务处理的&#xff0c;在分布式架构下&#xff0c;一个服务往往会部署多个实例来运行我们的业务&#xff0c;如果在这种分布式系统环境下运行任务调度&#xff0c;我们称之为分布式任务调度。 在当体…

FFmpeg 命令:从入门到精通 | 命令行环境搭建

FFmpeg 命令&#xff1a;从入门到精通 | 命令行环境搭建 FFmpeg 命令&#xff1a;从入门到精通 | 命令行环境搭建安装 FFmpeg验证 FFmpeg 是否安装成功 FFmpeg 命令&#xff1a;从入门到精通 | 命令行环境搭建 安装 FFmpeg 进入 FFmpeg 官网&#xff1a; 点击 Download&#…

河北吉力宝:国内顶尖资源荣誉共筑全景融合新商业生态

随着科技的不断发展和社会的进步&#xff0c;新兴企业纷纷崭露头角&#xff0c;展现出令人瞩目的商业潜力。随着科技的不断演进和社会的持续进步&#xff0c;新兴企业正崭露头角&#xff0c;显露出巨大的商机。在这个时代&#xff0c;合作和资源整合变得至关重要。河北吉力宝智…

【STM32单片机】数学自动出题器设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器&#xff0c;使用按键、IIC OLED模块等。 主要功能&#xff1a; 系统运行后&#xff0c;OLED液晶显示出题器开机界面&#xff0c;默认结果范围为100&#xff0c;可按…

对干扰SAY NO!GNSS模拟将提供伽利略OS-NMA功能(二)

上一章主要介绍了OS-NMA架构、测试载体和虹科Safran Skydel仿真引擎中的测试向量。本章将继续为大家介绍虹科Safran GNSS模拟如何使用OS-NMA场景及解决方案等内容。 测试GNSS接收器 在这一部分中&#xff0c;我们将演示如何使用OS-NMA场景&#xff0c;并提供如何修改它们以执…

QT基础入门——QMainWindow与对话框QDialog(三)

前言&#xff1a; Qt 并没有专门的菜单项类&#xff0c;只是使用一个QAction类&#xff0c;抽象出公共的动作。当我们把QAction对象添加到菜单&#xff0c;就显示成一个菜单项&#xff0c;添加到工具栏&#xff0c;就显示成一个工具按钮。用户可以通过点击菜单项、点击工具栏按…

asp.net闲置物品购物网系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net闲置物品购物网系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语 言开发 asp.net 闲置物品购物网 二、功…

2023年中国非晶纳米晶竞争格局、产业链及行业产量分析[图]

非晶合金又称“液态金属、金属玻璃”&#xff0c;是一种新型软磁合金材料&#xff0c;主要包含铁、硅、硼等元素。其主要制品非晶合金薄带的制造工艺是采用急速冷却技术将合金熔液以每秒106℃的速度急速冷却&#xff0c;形成厚度约0.03mm的非晶合金薄带&#xff0c;物理状态表现…

华为云ModelArts:引领AI艺术创作的未来,让人人都可以成为“艺术家”!

随着科技的飞速发展,艺术创作逐渐告别传统的画布和画笔,开始走向数字化、智能化的新时代。在这个蓬勃发展的领域中,华为云ModelArts以其强大的功能和出色的性能引领着AI艺术创作的未来。 华为云ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处…

【STM32单片机】多功能电子密码锁设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器&#xff0c;使用按键、IIC OLED模块、DS18B20温度传感器、SG90舵机、红外遥控、矩阵按键、EEPROM等。 主要功能&#xff1a; 系统运行后&#xff0c;OLED显示RTC日期…

【前段基础入门之】=>CSS3的新增特性!

文章目录 CSS3概述CSS3私有前缀常见浏览器私有前缀 新增盒模型相关属性怪异盒模型拖拽调整盒子大小盒子阴影不透明度 新增背景属性background-originbackground-clipbackground-size多背景图backgorund 复合属性 新增边框属性边框圆角边框外轮廓 新增文本属性文本阴影文本换行文…

用合成数据训练车辆姿态估计神经网络

我们的客户希望开发一款应用程序&#xff0c;引导用户通过 AR 指南和自动照片拍摄来拍摄更高质量的汽车照片。 本文重点介绍构建汽车姿态估计组件的技术。 在应用程序中&#xff0c;用户被引导站在与汽车一定的角度和距离&#xff0c;以标准化的方式捕捉最好的照片。 当用户处于…

1600*C. Good Subarrays(找规律前缀和)

Problem - 1398C - Codeforces 解析&#xff1a; 可以写出 sum[ j ] - sum[ i ] j - i 1&#xff0c;对其移项得 sum[ j ] - j sum[ i ] - &#xff08;i - 1&#xff09;&#xff0c;问题转换为有多少个前缀和相等&#xff0c;则用map遍历统计一遍即可。 注意&#xff0c;当…