【c++_containers】10分钟带你学会list

news2024/11/20 8:47:02

前言

        链表作为一个像是用“链子”链接起来的容器,在数据的存储等方面极为便捷。虽然单链表单独在实际的应用中没用什么作用,但是当他可以结合其他结构,比如哈希桶之类的。不过今天学习的list其实是一个带头双向链表。

言归正传,让我们看一下list的特性。

一、list的特性

这里我还是推荐去cplusplus上阅读英文原文档。这里我总结了几条,

1. list 是可以在常数范围内 在任意位置进行插入和删除的序列式容器 ,并且该容器 可以前后双向迭代。
2. list 的底层是 双向链表结构 ,双向链表中每个 元素存储在互不相关的独立节点 中,在节点中通过指针指向其前一个元素和后一个元素。
3. list forward_list 非常相似:最主要的不同在于 forward_list是单链表 ,只能朝前迭代,已让其更简单高效。
4. 与其他的序列式容器相比 (array vector deque) list 通常 在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比, list forward_list 最大的缺陷是 不支持任意位置的随机访问 ,比如:要访问 list的第6 个元素,必须从已知的位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些 额外的空间, 以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)。

其物理模型简化后如下图:

二、list的基本结构

前面我们提到list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。那么他每个小结点的结构就变得清楚明了了。

    template<class T>
	struct list_node
	{
		list_node<T>* _prev;
		list_node<T>* _next;
		T _val;

		list_node(const T& val = T())
			: _prev(nullptr)
			, _next(nullptr)
			, _val(val)
		{}			
	};

随后我们就可以写list的本体了

    template<class T>
	class list
	{
		typedef list_node<T> Node;
    private:
		Node* _head;//哨兵位
		size_t _size;

	};

加一个表示size的数据是因为list的空间是不连续的。

三、list的基础构造

        void empty_init()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;

			_size = 0;
		}

		list()
		{
			empty_init();
		}

将empty经行再封装是因为这样的构造函数设计可以方便地创建空的list对象,并且避免了在创建list对象时必须显式地指定初始大小。同时,通过将初始化代码封装在empty_init()函数中,可以简化list类的实现,提高代码的可读性和可维护性。

四、list的插入与删除

与vector不同的是list的其他几种构造或多或少的依赖插入,而且哨兵位的初始化就可以继续后面的操作。当然插入和删除是list的重要点。

我们先从尾插写起,如图当插入一个节点时我们可以先新建一个新的节点,将值存入其中。然后将末尾(_head->_prev)的_next与newnode链接,然后将new的_prev与末尾链接,最后将头节点的_prev指向newnode,newnode的_next与_head链接。

        void push_back(const T&x)
		{
			Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
			_size++;

		}

而对于任意位置插入,其实和上面的逻辑相似。

        //在pos之前插入,返回新插入元素位置
		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			prev->_next = newnode;
			newnode->_next = cur;

			cur->_prev = newnode;
			newnode->_prev = prev;

			++_size;

			return newnode;
		}

与次对立的是list任意位置的删除。逻辑就是他反过来。

        iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;

			delete cur;

			--_size;

			return next;
		}

但是list的删除面临着迭代器的失效前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

比如下面的案例:

void TestListIterator1()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {

 l.erase(it); 
 ++it;
 }
 // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
其赋值

改正后:
void TestListIterator()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {
 l.erase(it++); // it = l.erase(it);
 }
}

当这两个比较泛型的插入与删除实现后其余代码就变得简单了。

//拷贝构造        
        list(const list<T>& lt)
			//list(const list& lt)
		{
			empty_init();

			for (auto& e : lt)
			{
				push_back(e);
			}
		}
//析构函数
        ~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}
//头插
        void push_front(const T& x)
		{
			insert(begin(), x);
		}
//尾删
		void pop_back()
		{
			erase(--end());
		}
//头删
		void pop_front()
		{
			erase(begin());
		}
//清空
        void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}

			_size = 0;
		}

五、list的迭代器

list的迭代器我们要实现的主要就是他的++与--问题,而++就是返回当前位置的_next, --就是返回当前位置的_prev。

template<class T,class Ref,class Ptr>
	struct _list_iterator
	{
		typedef list_node<T> Node;
		typedef _list_iterator<T, Ref,Ptr> self;
		Node* _node;
		_list_iterator(Node* node)
			:_node(node)
		{}
		Ref& operator*()
		{
			return _node->_val;
		}
		Ptr operator->()
		{
			return &_node->_val;
		}
		self& operator++() 
		{
			_node = _node->_next;
			return *this;
		}
		self& operator++(int)//后置
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}
		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);

			_node = _node->_prev;

			return tmp;
		}
		bool operator!=(const self & it)const
		{
			return _node != it._node;
		}
		 
		bool operator==(const self & it)const
		{
			return _node == it._node;
		}
	};

_list_iterator类模板的三个类型参数分别为T(元素类型)、Ref(引用类型)和Ptr(指针类型)。这个类包含一个成员变量_node,它是一个指向list_node对象的指针,用于存储当前迭代器所指向的节点。这里的Ref与Ptr主要用于分辨const与非const.

六、list与vector的对比

vector
list
动态顺序表,一段连续空间
带头结点的双向循环链表
访
支持随机访问,访问某个元素效率 O(1)
不支持随机访问,访问某个元素 效率 O(N)
任意位置插入和删除效率低,需要搬移元素,时间复杂 度为 O(N) ,插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低
任意位置插入和删除效率高,不
需要搬移元素,时间复杂度为 O(1)
底层为连续空间,不容易造成内存碎片,空间利用率
高,缓存利用率高
底层节点动态开辟,小节点容易
造成内存碎片,空间利用率低,
缓存利用率低
原生态指针
对原生态指针 ( 节点指针 ) 进行封装
在插入元素时,要给所有的迭代器重新赋值,因为插入
元素有可能会导致重新扩容,致使原来迭代器失效,删
除时,当前迭代器需要重新赋值否则会失效
插入元素不会导致迭代器失效,
删除元素时,只会导致当前迭代
器失效,其他迭代器不受影响
使
需要高效存储,支持随机访问,不关心插入删除效率
大量插入和删除操作,不关心随
机访问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1064497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FFmpeg 基础模块:容器相关的 API 操作

目录 AVFormat 模块 AVFormat 前处理部分 AVFormat 读写处理部分 小结 思考 FFmpeg 目录中包含了 FFmpeg 库代码目录、构建工程目录、自测子系统目录等&#xff0c;具体内容如下&#xff1a; 现在你知道 FFmpeg 的源代码目录中都包含了哪些内容&#xff0c;在之后使用 FFm…

Springcloud支付模块

客户端消费者80 order 微服务提供者8001 payment 订单模块可以调动支付模块 步骤&#xff1a; 1、建moudle 2、改写pom 3、写yml 4、主启类 5、业务类

overleaf在线编辑工具使用教程

文章目录 1 用 orcid注册overleaf获取模板2 使用模板 1 用 orcid注册overleaf获取模板 通常来说&#xff0c;在期刊投稿网站information for author中找template 。下载压缩包后上传到over leaf中。 加入找不到官方模板&#xff0c;用overleaf中的 2 使用模板 .bib文件&…

Go语言中的指针介绍

Go语言中的指针 文章目录 Go语言中的指针一、Go语言中的指针介绍1.1 指针介绍1.2 基本语法1.3 声明和初始化1.4 Go 指针的3个重要概念1.4.1 指针地址&#xff08;Pointer Address&#xff09;1.4.2 指针类型&#xff08;Pointer Type&#xff09;1.4.3 指针取值&#xff08;Poi…

【CMU15-445 Part-15】Query Planning Optimization II

Part15-Query Planning & Optimization II Selection Statistics 维护每张表中的基本主要信息也就是tuple数量 N R N_R NR​以及每个属性中不同值的数量 V ( A , R ) V(A,R) V(A,R)&#xff0c; N R N_R NR​关系R中的元组数量&#xff0c;单独维护&#xff0c;不能用pag…

Elasticsearch:ES|QL 查询语言简介

警告&#xff1a;此功能处于技术预览阶段&#xff0c;可能会在未来版本中更改或删除。 Elastic 将尽最大努力解决任何问题&#xff0c;但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。在目前的 Elastic Stack 8.10 中此功能还没有提供。 Elasticsearch 查询语言 (ES|…

3D孪生场景搭建:3D漫游

上一篇 文章介绍了如何使用 NSDT 编辑器 制作模拟仿真应用场景&#xff0c;今天这篇文章将介绍如何使用NSDT 编辑器 设置3D漫游。 1、什么是3D漫游 3D漫游是指基于3D技术&#xff0c;将用户带入一个虚拟的三维环境中&#xff0c;通过交互式的手段&#xff0c;让用户可以自由地…

RK3568平台开发系列讲解(AI篇)车辆检测车道线识别可行驶区域分割 模型对比检测结果

&#x1f680;返回专栏总目录 文章目录 模型对比检测结果 沉淀、分享、成长&#xff0c;让自己和他人都能有所收获&#xff01;&#x1f604; &#x1f4e2;在当今的自动驾驶领域&#xff0c;车辆检测、车道线识别&#xff0c;可行驶区域分割等任务起着至关重要的作用。车辆检测…

Labview 实战 99乘法表

基于新手小白&#xff0c;使用Labview实现99乘法表&#xff0c;敢于发表自己的一点方法&#xff0c;还请各位大侠放过&#xff01; 如下&#xff1a; 运行效果如下&#xff1a; 思路为&#xff1a;将要显示出来的数据&#xff0c;全部转换为字符串形式&#xff0c;再塞入到数组…

搭建在线python运行环境

常遇到需要一个小工具&#xff0c;比如生成作息时间表&#xff0c;今天就搭建一个可在线使用的python运行环境 当然也可以交给ChatGPT完成 1、安装canda wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2019.03-Linux-x86_64.shyum install -y bzi…

黑马点评-01基于Redis实现短信登陆的功能

环境准备 当前模型 nginx服务器的作用 手机或者app端向nginx服务器发起请求,nginx基于七层模型走的是HTTP协议,可以实现基于Lua直接绕开tomcat访问Redis nginx也可以作为静态资源服务器,轻松扛下上万并发并负载均衡到下游的tomcat服务器,利用集群支撑起整个项目 使用nginx部…

volatile使用方法

volatile使用方法 编译优化。使用等级3的话&#xff0c;可能将优化了一些变量。 这为什么会开启等第三呢&#xff1f;这是关于单片机的内存容量比较小&#xff0c;所以开启优化的话&#xff0c;可以可以省一些空间&#xff0c;但是如果。会出现些变量的问题&#xff0c;需要通过…

基于A4988/DRV8825的四路步进电机驱动器

概述 简化板的CNC sheild V3.0&#xff0c;仅保留步进电机速度与方向的控制引脚STEP/DIR、使能端EN、芯片供电VCC\GND&#xff0c;共计11个引脚。PCB四周开设四个M3通孔&#xff0c;以便于安装固定。此外&#xff0c;将板载的焊死的保险丝更改为可更换的保险座保险丝&#xff…

Linux系统之安装cook菜谱工具

Linux系统之安装cook菜谱工具 一、cook菜谱工具介绍二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本3.3 检查系统是否安装pnpm 四、部署Node.js环境4.1 下载Node.js安装包4.2 解压Node.js安装包4.3 复制二进制…

蓝桥杯每日一题2023.10.6

题目描述 门牌制作 - 蓝桥云课 (lanqiao.cn) 题目分析 #include<bits/stdc.h> using namespace std; int ans; int main() {for(int i 1; i < 2020; i ){int x i;while(x){int a x % 10;if(a 2)ans ;x / 10;}}cout << ans;return 0; } 题目描述 既约分数…

Python3操作Redis最新版|CRUD基本操作(保姆级)

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 Python3数据科学包系列(三):数据分析实战 Win11查看安装的Python路…

数据结构P46(2-1~2-4)

2-1编写算法查找顺序表中值最小的结点&#xff0c;并删除该结点 #include <stdio.h> #include <stdlib.h> typedef int DataType; struct List {int Max;//最大元素 int n;//实际元素个数 DataType *elem;//首地址 }; typedef struct List*SeqList;//顺序表类型定…

一年一度的国庆节又结束了

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…

Iphone文件传到电脑用什么软件,看这里

在数字化时代&#xff0c;文件传输已经成为我们日常生活中不可或缺的一部分。然而&#xff0c;苹果用户在将手机文件传输到电脑时&#xff0c;往往会面临一些困扰。曾经的“文件传输助手”并不能完全满足用户的需求。于是&#xff0c;很多人开始寻找更便捷的解决方案。在本文中…

MySQL概念

原理定义概念 定义 数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库 数据库是长期储存在计算机内、有组织的、可共享的数据集合 分类&#xff1a; &#xff08;1&#xff09;非结构化数据&#xff1a; 数据相对来讲没有固定的特点&#…