目标检测算法改进系列之Backbone替换为FocalNet

news2025/1/8 5:35:43

FocalNet

近些年,Transformers在自然语言处理、图像分类、目标检测和图像分割上均取得了较大的成功,归根结底是自注意力(SA :self-attention)起到了关键性的作用,因此能够支持输入信息的全局交互。但是由于视觉tokens的大量存在,自注意力的计算复杂度高,尤其是在高分辨的输入时,因此针对该缺陷,论文《Focal Modulation Networks》提出了FocalNet网络。

论文地址:Focal Modulation Networks

原理:使用新提出的Focal Modulation替代之前的SA自注意力模块,解耦聚合和单个查询过程,先将查询周围的上下文信息进行聚合,再根据聚合信息获取查询结果。如下图所示,图中红色表示query token。对比来看,Window-wise Self-Attention (SA)利用周围的token(橙色)来捕获空间上下文信息;在此基础上,Focal Attention扩大了感受野,还可以使用更远的summarized tokens(蓝色);而Focal Modulation更为强大,先利用诸如depth-wise convolution的方式将不同粒度级别的空间上下文编码为summarized tokens (橙色、绿色和蓝色),再根据查询内容,选择性的将这些summarized tokens融合为query token。而本文新提出的方式便是进行轻量化,将聚合和单个查询进行解耦,减少计算量。

在前两者中,绿色和紫色箭头分别代表注意力交互和基于查询的聚合,但是都存在一个缺陷,即:均需要涉及大量的交互和聚合操作。而Focal Modulation计算过程得到大量简化。
原理图

FocalNet代码实现

# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

__all__ = ['focalnet_tiny_srf', 'focalnet_tiny_lrf', 'focalnet_small_srf', 'focalnet_small_lrf', 'focalnet_base_srf', 'focalnet_base_lrf', 'focalnet_large_fl3', 'focalnet_large_fl4', 'focalnet_xlarge_fl3', 'focalnet_xlarge_fl4', 'focalnet_huge_fl3', 'focalnet_huge_fl4']

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)     
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class FocalModulation(nn.Module):
    def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln_in_modulation=False, normalize_modulator=False):
        super().__init__()

        self.dim = dim
        self.focal_window = focal_window
        self.focal_level = focal_level
        self.focal_factor = focal_factor
        self.use_postln_in_modulation = use_postln_in_modulation
        self.normalize_modulator = normalize_modulator

        self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
        self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)

        self.act = nn.GELU()
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.focal_layers = nn.ModuleList()
                
        self.kernel_sizes = []
        for k in range(self.focal_level):
            kernel_size = self.focal_factor*k + self.focal_window
            self.focal_layers.append(
                nn.Sequential(
                    nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, 
                    groups=dim, padding=kernel_size//2, bias=False),
                    nn.GELU(),
                    )
                )              
            self.kernel_sizes.append(kernel_size)          
        if self.use_postln_in_modulation:
            self.ln = nn.LayerNorm(dim)

    def forward(self, x):
        """
        Args:
            x: input features with shape of (B, H, W, C)
        """
        C = x.shape[-1]

        # pre linear projection
        x = self.f(x).permute(0, 3, 1, 2).contiguous()
        q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
        
        # context aggreation
        ctx_all = 0 
        for l in range(self.focal_level):         
            ctx = self.focal_layers[l](ctx)
            ctx_all = ctx_all + ctx * gates[:, l:l+1]
        ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
        ctx_all = ctx_all + ctx_global * gates[:,self.focal_level:]

        # normalize context
        if self.normalize_modulator:
            ctx_all = ctx_all / (self.focal_level+1)

        # focal modulation
        modulator = self.h(ctx_all)
        x_out = q * modulator
        x_out = x_out.permute(0, 2, 3, 1).contiguous()
        if self.use_postln_in_modulation:
            x_out = self.ln(x_out)
        
        # post linear porjection
        x_out = self.proj(x_out)
        x_out = self.proj_drop(x_out)
        return x_out

    def extra_repr(self) -> str:
        return f'dim={self.dim}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0

        flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))

        # focal convolution
        for k in range(self.focal_level):
            flops += N * (self.kernel_sizes[k]**2+1) * self.dim

        # global gating
        flops += N * 1 * self.dim 

        #  self.linear
        flops += N * self.dim * (self.dim + 1)

        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

class FocalNetBlock(nn.Module):
    r""" Focal Modulation Network Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        focal_level (int): Number of focal levels. 
        focal_window (int): Focal window size at first focal level
        use_layerscale (bool): Whether use layerscale
        layerscale_value (float): Initial layerscale value
        use_postln (bool): Whether use layernorm after modulation
    """

    def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., 
                    act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                    focal_level=1, focal_window=3,
                    use_layerscale=False, layerscale_value=1e-4, 
                    use_postln=False, use_postln_in_modulation=False, 
                    normalize_modulator=False):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.mlp_ratio = mlp_ratio

        self.focal_window = focal_window
        self.focal_level = focal_level
        self.use_postln = use_postln

        self.norm1 = norm_layer(dim)
        self.modulation = FocalModulation(
            dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, 
            use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.gamma_1 = 1.0
        self.gamma_2 = 1.0    
        if use_layerscale:
            self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)

        self.H = None
        self.W = None

    def forward(self, x):
        H, W = self.H, self.W
        B, L, C = x.shape
        shortcut = x

        # Focal Modulation
        x = x if self.use_postln else self.norm1(x)
        x = x.view(B, H, W, C)
        x = self.modulation(x).view(B, H * W, C)
        x = x if not self.use_postln else self.norm1(x)

        # FFN
        x = shortcut + self.drop_path(self.gamma_1 * x)
        x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
               f"mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        
        # W-MSA/SW-MSA
        flops += self.modulation.flops(H*W)

        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class BasicLayer(nn.Module):
    """ A basic Focal Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        focal_level (int): Number of focal levels
        focal_window (int): Focal window size at first focal level
        use_layerscale (bool): Whether use layerscale
        layerscale_value (float): Initial layerscale value
        use_postln (bool): Whether use layernorm after modulation
    """

    def __init__(self, dim, out_dim, input_resolution, depth,
                 mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, 
                 downsample=None, use_checkpoint=False, 
                 focal_level=1, focal_window=1, 
                 use_conv_embed=False, 
                 use_layerscale=False, layerscale_value=1e-4, 
                 use_postln=False, 
                 use_postln_in_modulation=False, 
                 normalize_modulator=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint
        
        # build blocks
        self.blocks = nn.ModuleList([
            FocalNetBlock(
                dim=dim, 
                input_resolution=input_resolution,
                mlp_ratio=mlp_ratio, 
                drop=drop, 
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer,
                focal_level=focal_level,
                focal_window=focal_window, 
                use_layerscale=use_layerscale, 
                layerscale_value=layerscale_value,
                use_postln=use_postln, 
                use_postln_in_modulation=use_postln_in_modulation, 
                normalize_modulator=normalize_modulator, 
            )
            for i in range(depth)])

        if downsample is not None:
            self.downsample = downsample(
                img_size=input_resolution, 
                patch_size=2, 
                in_chans=dim, 
                embed_dim=out_dim, 
                use_conv_embed=use_conv_embed, 
                norm_layer=norm_layer, 
                is_stem=False
            )
        else:
            self.downsample = None

    def forward(self, x, H, W):
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)

        if self.downsample is not None:
            x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
            x, Ho, Wo = self.downsample(x)
        else:
            Ho, Wo = H, W        
        return x, Ho, Wo

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops

class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if use_conv_embed:
            # if we choose to use conv embedding, then we treat the stem and non-stem differently
            if is_stem:
                kernel_size = 7; padding = 2; stride = 4
            else:
                kernel_size = 3; padding = 1; stride = 2
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
        else:
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape

        x = self.proj(x)        
        H, W = x.shape[2:]
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x, H, W

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops

class FocalNet(nn.Module):
    r""" Focal Modulation Networks (FocalNets)

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Focal Transformer layer.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        drop_rate (float): Dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False 
        focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] 
        focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] 
        use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False 
        use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False 
        layerscale_value (float): Value for layer scale. Default: 1e-4 
        use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
    """
    def __init__(self, 
                img_size=224, 
                patch_size=4, 
                in_chans=3, 
                num_classes=1000,
                embed_dim=96, 
                depths=[2, 2, 6, 2], 
                mlp_ratio=4., 
                drop_rate=0., 
                drop_path_rate=0.1,
                norm_layer=nn.LayerNorm, 
                patch_norm=True,
                use_checkpoint=False,                 
                focal_levels=[2, 2, 2, 2], 
                focal_windows=[3, 3, 3, 3], 
                use_conv_embed=False, 
                use_layerscale=False, 
                layerscale_value=1e-4, 
                use_postln=False, 
                use_postln_in_modulation=False, 
                normalize_modulator=False, 
                **kwargs):
        super().__init__()

        self.num_layers = len(depths)
        embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]

        self.num_classes = num_classes
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.num_features = embed_dim[-1]
        self.mlp_ratio = mlp_ratio
        
        # split image into patches using either non-overlapped embedding or overlapped embedding
        self.patch_embed = PatchEmbed(
            img_size=to_2tuple(img_size), 
            patch_size=patch_size, 
            in_chans=in_chans, 
            embed_dim=embed_dim[0], 
            use_conv_embed=use_conv_embed, 
            norm_layer=norm_layer if self.patch_norm else None, 
            is_stem=True)

        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=embed_dim[i_layer], 
                               out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,  
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               drop=drop_rate, 
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer, 
                               downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
                               focal_level=focal_levels[i_layer], 
                               focal_window=focal_windows[i_layer], 
                               use_conv_embed=use_conv_embed,
                               use_checkpoint=use_checkpoint, 
                               use_layerscale=use_layerscale, 
                               layerscale_value=layerscale_value, 
                               use_postln=use_postln,
                               use_postln_in_modulation=use_postln_in_modulation, 
                               normalize_modulator=normalize_modulator
                    )
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)

        self.apply(self._init_weights)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {''}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {''}

    def forward(self, x):
        input_size = x.size(2)
        scale = [4, 8, 16, 32]
        
        x, H, W = self.patch_embed(x)
        x = self.pos_drop(x)
        features = [x, None, None, None]
        for layer in self.layers:
            x, H, W = layer(x, H, W)
            if input_size // H in scale:
                features[scale.index(input_size // H)] = x
        # features[-1] = self.norm(features[-1])  # B L C
        
        for i in range(len(features)):
            features[i] = torch.transpose(features[i], dim0=2, dim1=1).view(-1,features[i].size(2), int(features[i].size(1) ** 0.5), int(features[i].size(1) ** 0.5))
        
        return features

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

model_urls = {
    "focalnet_tiny_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth",
    "focalnet_tiny_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth",
    "focalnet_small_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth",
    "focalnet_small_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth",
    "focalnet_base_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth",
    "focalnet_base_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",    
    "focalnet_large_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", 
    "focalnet_large_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", 
    "focalnet_xlarge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", 
    "focalnet_xlarge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", 
    "focalnet_huge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth", 
    "focalnet_huge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth", 
}

def focalnet_tiny_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_small_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_base_srf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_srf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_tiny_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_small_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_base_lrf(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_lrf']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_tiny_iso(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=192, **kwargs)
    if pretrained:
        url = model_urls['focalnet_tiny_iso']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_small_iso(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=384, **kwargs)
    if pretrained:
        url = model_urls['focalnet_small_iso']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_base_iso(pretrained=False, **kwargs):
    model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
    if pretrained:
        url = model_urls['focalnet_base_iso']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

# FocalNet large+ models 
def focalnet_large_fl3(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)
    if pretrained:
        url = model_urls['focalnet_large_fl3']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_large_fl4(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)
    if pretrained:
        url = model_urls['focalnet_large_fl4']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_xlarge_fl3(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)
    if pretrained:
        url = model_urls['focalnet_xlarge_fl3']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_xlarge_fl4(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)
    if pretrained:
        url = model_urls['focalnet_xlarge_fl4']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_huge_fl3(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)
    if pretrained:
        url = model_urls['focalnet_huge_fl3']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

def focalnet_huge_fl4(pretrained=False, **kwargs):
    model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)
    if pretrained:
        url = model_urls['focalnet_huge_fl4']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
    return model

if __name__ == '__main__':
    from copy import deepcopy
    img_size = 640
    x = torch.rand(16, 3, img_size, img_size).cuda()
    model = focalnet_tiny_srf(pretrained=True).cuda()
    # model_copy = deepcopy(model)
    for i in model(x):
        print(i.size())

    flops = model.flops()
    print(f"number of GFLOPs: {flops / 1e9}")

    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"number of params: {n_parameters}")
    
    print(list(model_urls.keys()))

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    is_backbone = False
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            t = m
            m = eval(m) if isinstance(m, str) else m  # eval strings
        except:
            pass
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except:
                    args[j] = a

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif isinstance(m, str):
            t = m
            m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {focalnet_tiny_srf}: #可添加更多Backbone
            m = m(*args)
            c2 = m.channel
        else:
            c2 = ch[f]
        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):
    y, dt = [], []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if hasattr(m, 'backbone'):
            x = m(x)
            for _ in range(5 - len(x)):
                x.insert(0, None)
            for i_idx, i in enumerate(x):
                if i_idx in self.save:
                    y.append(i)
                else:
                    y.append(None)
            x = x[-1]
        else:
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
    return x

创建新的.yaml配置文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, focalnet_tiny_srf, [False]], # 4
   [-1, 1, SPPF, [1024, 5]],  # 5
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], # 6
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
   [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
   [-1, 3, C3, [512, False]],  # 9

   [-1, 1, Conv, [256, 1, 1]], # 10
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
   [-1, 3, C3, [256, False]],  # 13 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], # 14
   [[-1, 10], 1, Concat, [1]],  # cat head P4 15
   [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], # 17
   [[-1, 5], 1, Concat, [1]],  # cat head P5 18
   [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)

   [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1062647.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV项目开发实战--使用最先进的方法“F、B、Alpha Matting”进行图像抠图--提供完整代码

示范 让我们对现实生活中的图像启动 FBA Matting 方法。要应用 FBA Matting 算法,我们首先需要生成一个 trimap(我们稍后会介绍它是什么)。在我们的演示中,我们将使用预训练的DeepLabV3生成分割掩模,其中每个像素属于前景类的概率。之后,我们将使用大量膨胀操作将边界像…

【6】c++设计模式——>UML表示类之间的依赖关系

依赖&#xff08;Dependency&#xff09;关系是一种使用关系&#xff0c;特定事物的改变有可能会影响到使用该事物的其他事物&#xff0c;在需要表示一个事物使用另一个事物时使用依赖关系&#xff0c;大多数情况下依赖关系体现在某个类的方法使用另一个类的对象作为参数。 在U…

JavaEE-网络编程套接字(UDP/TCP)

下面写一个简单的UDP客户端服务器流程 思路&#xff1a; 对于服务器端&#xff1a;读取请求&#xff0c;并解析–> 根据解析出的请求&#xff0c;做出响应(这里是一个回显&#xff0c;)–>把响应写回客户端 对于客户端&#xff1a;从控制台读取用户输入的内容–>从控制…

【MyBatis-Plus】快速精通Mybatis-plus框架—快速入门

大家在日常开发中应该能发现&#xff0c;单表的CRUD功能代码重复度很高&#xff0c;也没有什么难度。而这部分代码量往往比较大&#xff0c;开发起来比较费时。 因此&#xff0c;目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…

约束优化算法(optimtool.constrain)

import optimtool as oo from optimtool.base import np, sp, pltpip install optimtool>2.4.2约束优化算法&#xff08;optimtool.constrain&#xff09; import optimtool.constrain as oc oc.[方法名].[函数名]([目标函数], [参数表], [等式约束表], [不等式约数表], [初…

1798_GNU pdf阅读器evince_支持的格式

全部学习汇总&#xff1a; GreyZhang/g_GNU: After some years I found that I do need some free air, so dive into GNU again! (github.com) 顺着之前的wiki了解的文档&#xff0c;这一次看看evince支持的文件格式。关于这部分&#xff0c;原始的介绍网页链接&#xff1a; A…

SpringCloud(二)Docker、Spring AMQP、ElasticSearch

文章目录 DockerDocker与虚拟机Docker架构镜像、容器、镜像托管平台Docker架构Docker实践 Spring AMQP简单使用案例工作队列- WorkQueue发布订阅服务FanoutExchangeDirectExchangeTopicExchange 消息转换器 ElasticSearch倒排索引IK分词器IK分词拓展与停用字典 操作索引库mappi…

创建django文件

1、在指定目录里打开终端&#xff0c;输入D:\Softwares\Anaconda3\envs\pytorch\Scripts\django-admin .exe startproject 名称 &#xff0c;即可在对应目录里创建django文件。

后端面经学习自测(二)

文章目录 1、Http1.1和2.0的区别大概是什么&#xff1f;HTTP & HTTPS 2、HTTP&#xff0c;用户后续的操作&#xff0c;服务端如何知道属于同一个用户cookie & session & token手机验证码登录流程SSO单点登录 3、如果服务端是一个集群机器&#xff1f;4、hashmap是线…

目标检测算法改进系列之Backbone替换为PoolFormer

PoolFormer MetaFormer是颜水成大佬的一篇Transformer的论文&#xff0c;该篇论文的贡献主要有两点&#xff1a;第一、将Transformer抽象为一个通用架构的MetaFormer&#xff0c;并通过经验证明MetaFormer架构在Transformer/ mlp类模型取得了极大的成功。 第二、通过仅采用简单…

2019强网杯随便注bugktu sql注入

一.2019强网杯随便注入 过滤了一些函数&#xff0c;联合查询&#xff0c;报错&#xff0c;布尔&#xff0c;时间等都不能用了&#xff0c;尝试堆叠注入 1.通过判断是单引号闭合 ?inject1-- 2.尝试堆叠查询数据库 ?inject1;show databases;-- 3.查询数据表 ?inject1;show …

六、互联网技术——数据存储

文章目录 一、存储系统层次结构二、按照重要性分类三、磁盘阵列RAID三、RAID基础四、磁盘阵列分级五、数据备份与恢复六、容灾与灾难恢复 一、存储系统层次结构 常见的三层存储体系结构如下图所示&#xff0c;分为高速缓冲存储器、主存储器和外存储器。 二、按照重要性分类 …

项目进展(八)-编写代码,驱动ADS1285

一、代码 根据芯片的数据手册编写部分驱动&#xff0c;首先看部分引脚的波形&#xff1a; DRDY: CS&#xff1a; 首先在代码初始化时连续写入三个寄存器&#xff1a; void WriteReg(uint8_t startAddr, uint8_t *regData, uint8_t number) {uint8_t i0;// 循环写number1次…

WVP-28181协议视频平台搭建教程

28181协议视频平台搭建教程 安装mysql安装redis安装ZLMediaKit安装28181协议视频平台安装依赖下载源码编译静态页面打包项目, 生成可执行jar修改配置文件启动WVP 项目地址&#xff1a; https://github.com/648540858/wvp-GB28181-pro 说明: wvp-GB28181-pro 依赖redis和mysql中…

前端 富文本编辑器原理——从javascript、html、css开始入门

文章目录 ⭐前言⭐html的contenteditable属性&#x1f496; 输入的光标位置&#xff08;浏览器获取selection&#xff09;⭐使用Selection.toString () 返回指定的文本⭐getRangeAt 获取指定索引范围 &#x1f496; 修改光标位置&#x1f496; 设置选取range ⭐总结⭐结束 ⭐前…

私有云盘:lamp部署nextcloud+高可用集群

目录 一、实验准备&#xff1a; 二、配置mariadb主从复制 三台主机下载mariadb 1&#xff09;主的操作 2&#xff09;从的操作 3&#xff09;测试数据是否同步 三、配置nfs让web服务挂载 1、安装 2、配置nfs服务器 3、配置web服务的httpd 4、测试 四、web 服务器 配…

Linux——指令初识

Linux下基本指令 前言一、 ls 指令二、 pwd命令三、cd 指令四、 touch指令五、mkdir指令六、rmdir指令 && rm 指令七、man指令八、cp指令九、mv指令十、cat指令十一、.more指令十二、less指令十三、head指令十四、tail指令总结 前言 linux的学习开始啦&#xff01; 今…

MyBatisPlus(十二)排序查询:orderBy

说明 排序查询&#xff0c;对应SQL语句中的 orderBy 语句&#xff0c;对查询结果按照指定字段排序。 升序&#xff1a;orderByAsc /*** 查询用户列表&#xff0c; 查询条件&#xff1a;按照 年龄 升序排列*/Testvoid orderByAsc() {LambdaQueryWrapper<User> wrapper …

OpenCV实现人脸检测(Haar特征)

学习目标 原理 实现 import cv2 as cv print(cv.__file__) 路径&#xff1a;E:\Anaconda3\envs\test_py3.6\Lib\site-packages\cv2\data 代码实现 import cv2 as cv import matplotlib.pyplot as plt from pylab import mplmpl.rcParams[font.sans-serif] [SimHei] #1&#x…

小程序中如何开启分销

小程序共享微信生态&#xff0c;商家可以通过小程序来快速扩大自己的销售渠道&#xff0c;其中一个非常受重要的功能就是分销。通过开启分销功能&#xff0c;商家可以让更多的人参与到销售中来&#xff0c;从而提高销售额。那么&#xff0c;在小程序中如何开启设置分销呢&#…