目标检测算法改进系列之Backbone替换为PoolFormer

news2025/1/9 2:01:42

PoolFormer

MetaFormer是颜水成大佬的一篇Transformer的论文,该篇论文的贡献主要有两点:第一、将Transformer抽象为一个通用架构的MetaFormer,并通过经验证明MetaFormer架构在Transformer/ mlp类模型取得了极大的成功。 第二、通过仅采用简单的非参数算子pooling作为MetaFormer的极弱token混合器,构建了一个名为PoolFormer。

原文地址:MetaFormer Is Actually What You Need for Vision

PoolFormer结构与效果

Transformer编码器如图1(a)所示,由两部分组成。一个是注意力模块,用于在token之间混合信息,我们将其称为token mixer。另一个组件包含剩余的模块,如通道mlp和残差连接。transformer的成功归功于基于注意力的token混合器。基于这一共识,已经开发了许多注意力模块的变体,以改进视觉Transformer,比如上篇DEiT就是增加了一个dist token。

最近的一些方法在MetaFormer架构中探索了其他类型的token mixers,例如,用傅里叶变换取代了注意力,仍然达到了普通transformer的约97%的精度。综合所有这些结果,似乎只要模型采用MetaFormer作为通用架构,就可以获得非常优秀的结果。为了验证这一假设,作者应用一个极其简单的非参数操作符pooling作为令牌混合器,只进行基本的令牌混合,将其命名为PoolFormer。PoolFormer-M36在ImageNet-1K分类基准上达到82.1%的top-1精度,超过了DeiT[53]和ResMLP[52]等调优的视觉变压器,充分展示了MetaFormer通用架构的优秀性能。

PoolFormer代码实现

# Copyright 2021 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PoolFormer implementation
"""
import os
import copy
import torch
import torch.nn as nn
import numpy as np

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_, to_2tuple
from timm.models.registry import register_model

__all__ = ['poolformer_s12', 'poolformer_s24', 'poolformer_s36', 'poolformer_m48', 'poolformer_m36']

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'pool_size': None,
        'crop_pct': .95, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 
        'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'poolformer_s': _cfg(crop_pct=0.9),
    'poolformer_m': _cfg(crop_pct=0.95),
}


class PatchEmbed(nn.Module):
    """
    Patch Embedding that is implemented by a layer of conv. 
    Input: tensor in shape [B, C, H, W]
    Output: tensor in shape [B, C, H/stride, W/stride]
    """
    def __init__(self, patch_size=16, stride=16, padding=0, 
                 in_chans=3, embed_dim=768, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, 
                              stride=stride, padding=padding)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x


class LayerNormChannel(nn.Module):
    """
    LayerNorm only for Channel Dimension.
    Input: tensor in shape [B, C, H, W]
    """
    def __init__(self, num_channels, eps=1e-05):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \
            + self.bias.unsqueeze(-1).unsqueeze(-1)
        return x


class GroupNorm(nn.GroupNorm):
    """
    Group Normalization with 1 group.
    Input: tensor in shape [B, C, H, W]
    """
    def __init__(self, num_channels, **kwargs):
        super().__init__(1, num_channels, **kwargs)


class Pooling(nn.Module):
    """
    Implementation of pooling for PoolFormer
    --pool_size: pooling size
    """
    def __init__(self, pool_size=3):
        super().__init__()
        self.pool = nn.AvgPool2d(
            pool_size, stride=1, padding=pool_size//2, count_include_pad=False)

    def forward(self, x):
        return self.pool(x) - x


class Mlp(nn.Module):
    """
    Implementation of MLP with 1*1 convolutions.
    Input: tensor with shape [B, C, H, W]
    """
    def __init__(self, in_features, hidden_features=None, 
                 out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class PoolFormerBlock(nn.Module):
    """
    Implementation of one PoolFormer block.
    --dim: embedding dim
    --pool_size: pooling size
    --mlp_ratio: mlp expansion ratio
    --act_layer: activation
    --norm_layer: normalization
    --drop: dropout rate
    --drop path: Stochastic Depth, 
        refer to https://arxiv.org/abs/1603.09382
    --use_layer_scale, --layer_scale_init_value: LayerScale, 
        refer to https://arxiv.org/abs/2103.17239
    """
    def __init__(self, dim, pool_size=3, mlp_ratio=4., 
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
                 drop=0., drop_path=0., 
                 use_layer_scale=True, layer_scale_init_value=1e-5):

        super().__init__()

        self.norm1 = norm_layer(dim)
        self.token_mixer = Pooling(pool_size=pool_size)
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, 
                       act_layer=act_layer, drop=drop)

        # The following two techniques are useful to train deep PoolFormers.
        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
                * self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
                * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


def basic_blocks(dim, index, layers, 
                 pool_size=3, mlp_ratio=4., 
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
                 drop_rate=.0, drop_path_rate=0., 
                 use_layer_scale=True, layer_scale_init_value=1e-5):
    """
    generate PoolFormer blocks for a stage
    return: PoolFormer blocks 
    """
    blocks = []
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (
            block_idx + sum(layers[:index])) / (sum(layers) - 1)
        blocks.append(PoolFormerBlock(
            dim, pool_size=pool_size, mlp_ratio=mlp_ratio, 
            act_layer=act_layer, norm_layer=norm_layer, 
            drop=drop_rate, drop_path=block_dpr, 
            use_layer_scale=use_layer_scale, 
            layer_scale_init_value=layer_scale_init_value, 
            ))
    blocks = nn.Sequential(*blocks)

    return blocks


class PoolFormer(nn.Module):
    """
    PoolFormer, the main class of our model
    --layers: [x,x,x,x], number of blocks for the 4 stages
    --embed_dims, --mlp_ratios, --pool_size: the embedding dims, mlp ratios and 
        pooling size for the 4 stages
    --downsamples: flags to apply downsampling or not
    --norm_layer, --act_layer: define the types of normalization and activation
    --num_classes: number of classes for the image classification
    --in_patch_size, --in_stride, --in_pad: specify the patch embedding
        for the input image
    --down_patch_size --down_stride --down_pad: 
        specify the downsample (patch embed.)
    --fork_feat: whether output features of the 4 stages, for dense prediction
    --init_cfg, --pretrained: 
        for mmdetection and mmsegmentation to load pretrained weights
    """
    def __init__(self, layers, embed_dims=None, 
                 mlp_ratios=None, downsamples=None, 
                 pool_size=3, 
                 norm_layer=GroupNorm, act_layer=nn.GELU, 
                 num_classes=1000,
                 in_patch_size=7, in_stride=4, in_pad=2, 
                 down_patch_size=3, down_stride=2, down_pad=1, 
                 drop_rate=0., drop_path_rate=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5, 
                 fork_feat=True,
                 init_cfg=None, 
                 pretrained=None, 
                 **kwargs):

        super().__init__()

        if not fork_feat:
            self.num_classes = num_classes
        self.fork_feat = fork_feat

        self.patch_embed = PatchEmbed(
            patch_size=in_patch_size, stride=in_stride, padding=in_pad, 
            in_chans=3, embed_dim=embed_dims[0])

        # set the main block in network
        network = []
        for i in range(len(layers)):
            stage = basic_blocks(embed_dims[i], i, layers, 
                                 pool_size=pool_size, mlp_ratio=mlp_ratios[i],
                                 act_layer=act_layer, norm_layer=norm_layer, 
                                 drop_rate=drop_rate, 
                                 drop_path_rate=drop_path_rate,
                                 use_layer_scale=use_layer_scale, 
                                 layer_scale_init_value=layer_scale_init_value)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if downsamples[i] or embed_dims[i] != embed_dims[i+1]:
                # downsampling between two stages
                network.append(
                    PatchEmbed(
                        patch_size=down_patch_size, stride=down_stride, 
                        padding=down_pad, 
                        in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
                        )
                    )

        self.network = nn.ModuleList(network)

        if self.fork_feat:
            # add a norm layer for each output
            self.out_indices = [0, 2, 4, 6]
            for i_emb, i_layer in enumerate(self.out_indices):
                if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                    # TODO: more elegant way
                    """For RetinaNet, `start_level=1`. The first norm layer will not used.
                    cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
                    """
                    layer = nn.Identity()
                else:
                    layer = norm_layer(embed_dims[i_emb])
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)
        else:
            # Classifier head
            self.norm = norm_layer(embed_dims[-1])
            self.head = nn.Linear(
                embed_dims[-1], num_classes) if num_classes > 0 \
                else nn.Identity()
        self.init_cfg = copy.deepcopy(init_cfg)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 224, 224))]

    def reset_classifier(self, num_classes):
        self.num_classes = num_classes
        self.head = nn.Linear(
            self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_embeddings(self, x):
        x = self.patch_embed(x)
        return x

    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs

    def forward(self, x):
        # input embedding
        x = self.forward_embeddings(x)
        # through backbone
        x = self.forward_tokens(x)
        return x


model_urls = {
    "poolformer_s12": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s12.pth.tar",
    "poolformer_s24": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s24.pth.tar",
    "poolformer_s36": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s36.pth.tar",
    "poolformer_m36": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m36.pth.tar",
    "poolformer_m48": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m48.pth.tar",
}

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def poolformer_s12(pretrained=False, **kwargs):
    """
    PoolFormer-S12 model, Params: 12M
    --layers: [x,x,x,x], numbers of layers for the four stages
    --embed_dims, --mlp_ratios: 
        embedding dims and mlp ratios for the four stages
    --downsamples: flags to apply downsampling or not in four blocks
    """
    layers = [2, 2, 6, 2]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims, 
        mlp_ratios=mlp_ratios, downsamples=downsamples, 
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s12']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model

def poolformer_s24(pretrained=False, **kwargs):
    """
    PoolFormer-S24 model, Params: 21M
    """
    layers = [4, 4, 12, 4]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims, 
        mlp_ratios=mlp_ratios, downsamples=downsamples, 
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s24']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model

def poolformer_s36(pretrained=False, **kwargs):
    """
    PoolFormer-S36 model, Params: 31M
    """
    layers = [6, 6, 18, 6]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims, 
        mlp_ratios=mlp_ratios, downsamples=downsamples, 
        layer_scale_init_value=1e-6, 
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s36']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model

def poolformer_m36(pretrained=False, **kwargs):
    """
    PoolFormer-M36 model, Params: 56M
    """
    layers = [6, 6, 18, 6]
    embed_dims = [96, 192, 384, 768]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims, 
        mlp_ratios=mlp_ratios, downsamples=downsamples, 
        layer_scale_init_value=1e-6, 
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_m']
    if pretrained:
        url = model_urls['poolformer_m36']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model


@register_model
def poolformer_m48(pretrained=False, **kwargs):
    """
    PoolFormer-M48 model, Params: 73M
    """
    layers = [8, 8, 24, 8]
    embed_dims = [96, 192, 384, 768]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims, 
        mlp_ratios=mlp_ratios, downsamples=downsamples, 
        layer_scale_init_value=1e-6, 
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_m']
    if pretrained:
        url = model_urls['poolformer_m48']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model

if __name__ == '__main__':
    model = poolformer_s12(pretrained=True)
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    is_backbone = False
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            t = m
            m = eval(m) if isinstance(m, str) else m  # eval strings
        except:
            pass
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except:
                    args[j] = a

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif isinstance(m, str):
            t = m
            m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {poolformer_s12}: #可添加更多Backbone
            m = m(*args)
            c2 = m.channel
        else:
            c2 = ch[f]
        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):
    y, dt = [], []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if hasattr(m, 'backbone'):
            x = m(x)
            for _ in range(5 - len(x)):
                x.insert(0, None)
            for i_idx, i in enumerate(x):
                if i_idx in self.save:
                    y.append(i)
                else:
                    y.append(None)
            x = x[-1]
        else:
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
    return x

创建.yaml配置文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, poolformer_s12, [False]], # 4
   [-1, 1, SPPF, [1024, 5]],  # 5
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], # 6
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
   [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
   [-1, 3, C3, [512, False]],  # 9

   [-1, 1, Conv, [256, 1, 1]], # 10
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
   [-1, 3, C3, [256, False]],  # 13 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], # 14
   [[-1, 10], 1, Concat, [1]],  # cat head P4 15
   [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], # 17
   [[-1, 5], 1, Concat, [1]],  # cat head P5 18
   [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)

   [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1062629.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2019强网杯随便注bugktu sql注入

一.2019强网杯随便注入 过滤了一些函数&#xff0c;联合查询&#xff0c;报错&#xff0c;布尔&#xff0c;时间等都不能用了&#xff0c;尝试堆叠注入 1.通过判断是单引号闭合 ?inject1-- 2.尝试堆叠查询数据库 ?inject1;show databases;-- 3.查询数据表 ?inject1;show …

六、互联网技术——数据存储

文章目录 一、存储系统层次结构二、按照重要性分类三、磁盘阵列RAID三、RAID基础四、磁盘阵列分级五、数据备份与恢复六、容灾与灾难恢复 一、存储系统层次结构 常见的三层存储体系结构如下图所示&#xff0c;分为高速缓冲存储器、主存储器和外存储器。 二、按照重要性分类 …

项目进展(八)-编写代码,驱动ADS1285

一、代码 根据芯片的数据手册编写部分驱动&#xff0c;首先看部分引脚的波形&#xff1a; DRDY: CS&#xff1a; 首先在代码初始化时连续写入三个寄存器&#xff1a; void WriteReg(uint8_t startAddr, uint8_t *regData, uint8_t number) {uint8_t i0;// 循环写number1次…

WVP-28181协议视频平台搭建教程

28181协议视频平台搭建教程 安装mysql安装redis安装ZLMediaKit安装28181协议视频平台安装依赖下载源码编译静态页面打包项目, 生成可执行jar修改配置文件启动WVP 项目地址&#xff1a; https://github.com/648540858/wvp-GB28181-pro 说明: wvp-GB28181-pro 依赖redis和mysql中…

前端 富文本编辑器原理——从javascript、html、css开始入门

文章目录 ⭐前言⭐html的contenteditable属性&#x1f496; 输入的光标位置&#xff08;浏览器获取selection&#xff09;⭐使用Selection.toString () 返回指定的文本⭐getRangeAt 获取指定索引范围 &#x1f496; 修改光标位置&#x1f496; 设置选取range ⭐总结⭐结束 ⭐前…

私有云盘:lamp部署nextcloud+高可用集群

目录 一、实验准备&#xff1a; 二、配置mariadb主从复制 三台主机下载mariadb 1&#xff09;主的操作 2&#xff09;从的操作 3&#xff09;测试数据是否同步 三、配置nfs让web服务挂载 1、安装 2、配置nfs服务器 3、配置web服务的httpd 4、测试 四、web 服务器 配…

Linux——指令初识

Linux下基本指令 前言一、 ls 指令二、 pwd命令三、cd 指令四、 touch指令五、mkdir指令六、rmdir指令 && rm 指令七、man指令八、cp指令九、mv指令十、cat指令十一、.more指令十二、less指令十三、head指令十四、tail指令总结 前言 linux的学习开始啦&#xff01; 今…

MyBatisPlus(十二)排序查询:orderBy

说明 排序查询&#xff0c;对应SQL语句中的 orderBy 语句&#xff0c;对查询结果按照指定字段排序。 升序&#xff1a;orderByAsc /*** 查询用户列表&#xff0c; 查询条件&#xff1a;按照 年龄 升序排列*/Testvoid orderByAsc() {LambdaQueryWrapper<User> wrapper …

OpenCV实现人脸检测(Haar特征)

学习目标 原理 实现 import cv2 as cv print(cv.__file__) 路径&#xff1a;E:\Anaconda3\envs\test_py3.6\Lib\site-packages\cv2\data 代码实现 import cv2 as cv import matplotlib.pyplot as plt from pylab import mplmpl.rcParams[font.sans-serif] [SimHei] #1&#x…

小程序中如何开启分销

小程序共享微信生态&#xff0c;商家可以通过小程序来快速扩大自己的销售渠道&#xff0c;其中一个非常受重要的功能就是分销。通过开启分销功能&#xff0c;商家可以让更多的人参与到销售中来&#xff0c;从而提高销售额。那么&#xff0c;在小程序中如何开启设置分销呢&#…

【Blender实景合成】会跳舞的神里绫华

效果预览 本文将介绍Blender用于实景合成的工作流程。 先看效果&#xff1a; 神里绫华爬上了我的办公桌 模型和动作资源准备 角色模型 本次主要使用的是原神游戏中&#xff0c;神里绫华的角色模型&#xff0c;该模型米哈游在模之屋网站上进行开源。 下载地址&#xff1a;ht…

不同数据类型在单片机内存中占多少字节?

文章目录 前言一、不同编译器二、C51* 指针型 三、sizeof结构体联合体 前言 在C语言中&#xff0c;数据类型指的是用于声明不同类型的变量或者函数的一个广泛的系统。变量的类型决定了变量存储占用的空间 一、不同编译器 类型16位编译器大小32位编译器大小64位编译器大小char…

1801_codesys产品主样本了解

全部学习汇总&#xff1a; GreyZhang/g_codesys: some codesys learning notes (github.com) 有些技术、学术的成长&#xff0c;氛围也是很重要的。我觉得工业控制&#xff0c;德国做得算是世界上很突出的。而这个巴伐利亚&#xff0c;更是突出中的佼佼者了。从这里的介绍看&am…

React核心原理与实际开发

学习目标 React是啥&#xff1f; 官方定义&#xff1a;将前端请求获取到的数据渲染为HTML视图的JavaScript库。 一、React入门 1、React项目创建 直接创建react&#xff0c;使用初始化会创建package.json npm init -y再安装 2、React基本使用 使用纯JS创建ReactDOM&#…

C语言数据结构2 1.2 算法

算法的基本概念 算法的定义 算法是对特定问题求解步骤的一种描述&#xff0c;它是指定的有限序列&#xff0c;其中的每条指令表示一个或多个操作。 例、 算法的特性 &#xff08;5个&#xff09; 1.有穷性 一个算法总在执行有穷步之后结束&#xff0c;且每一步都可以在有穷…

医疗器械标准目录汇编2022版共178页(文中附下载链接!)

为便于更好地应用医疗器械标准&#xff0c;国家药监局医疗器械标准管理中心组织对现行1851项医疗器械国家和行业标准按技术领域&#xff0c;编排形成《医疗器械标准目录汇编&#xff08;2022版&#xff09;》 该目录汇编分为通用技术领域和专业技术领域两大类&#xff0c;通用…

计算机网络 第三章数据链路层

文章目录 1、数据链路层概述 1、数据链路层概述

C语言:选择+编程(每日一练Day9)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;自除数 思路一&#xff1a; 题二&#xff1a;除自身以外数组的乘积 思路二&#xff1a; 本人实力有限可能对…

2.2.3 vim操作合集

1 vim VIM 是 Linux 系统上一款文本编辑器,学习 VIM 最好的文档,应该是阅读学习 VIM 的帮助文档,可以使用本地的帮助文件(vim--->:help),或者使用在线帮助文档。同时针对vim的使用,相应的相书籍也很多,如下 2 vim操作模式 命令模式:默认模式,该模式下可以移动光标…

ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端

人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff0…