傅里叶系列 P1 的定价选项

news2025/1/11 20:45:10
  • 如果您想了解更多信息,请查看第 2 部分和第 3 部分。

一、说明

        这是第一篇文章,我将帮助您获得如何使用这个新的强大工具来解决金融中的半分析问题并取代您的蒙特卡洛方法的直觉。

        我们都知道并喜欢蒙特卡洛数字积分方法,但是如果我告诉你你可以用虚数和傅里叶级数来代替蒙特卡洛呢?
        主要好处是速度,这在期权定价中非常重要。这非常重要,因为用于定价股票期权的赫斯顿模型需要数字积分,蒙特卡罗大约需要 100 毫秒,傅里叶级数需要几毫秒。

二、第 1 部分:但是什么是傅里叶级数?

        对于任何函数 f 和区间 a,b,我们可以将 f(x) 近似为余弦和正弦的无限和,L = b-a

三、第 2 部分:将数学公式应用于 Python


def get_fourier_approx(f, x:np.array, a:float, b:float, N:int):
    fa = lambda x, n : f(x) * cos((2*pi*n*x)/(b - a))
    fb = lambda x, n : f(x) * sin((2*pi*n*x)/(b - a))

    A0 = 1/(b - a) * quad(f, a, b, limit=200)[0]

    Cosine_Sine_Sum = np.zeros_like(x)
    for n in range(1, N+1):
        A = 2/(b - a) * quad(fa, a, b, args=(n), limit=200)[0]
        B = 2/(b - a) * quad(fb, a, b, args=(n), limit=200)[0]
        Cosine_Sine_Sum += A*cos((2*pi*n*x)/(b - a)) + B*sin((2*pi*n*x)/(b - a))

    fx = A0 + Cosine_Sine_Sum
    return fx
a = -6
b = 6
x = np.linspace(a, b, 1_000)
y = f(x)

fig, (ax1, ax2) = plt.subplots(2, figsize=(20,12))
blue_shades = ['#0000FF', '#3399FF', '#66B2FF', '#99CCFF', '#CCE5FF']

avg_residuals = []
Ns = [8, 16, 32, 64, 128]
for i, N in enumerate(Ns):
    fx = get_fourier_approx(f=f, x=x, a=a, b=b, N=N)
    ax1.plot(x,fx, blue_shades[i], label=f'N = {N}')
    ax2.plot(x,y-fx, blue_shades[i], label=f'N = {N}')
    avg_residuals.append(np.abs(y-fx).mean())

ax1.set_title('Fourier Transform of f(x)')
ax1.plot(x,y,'tab:red', linestyle='--')
ax2.set_title('Residuals')
plt.tight_layout() ; ax1.legend();ax2.legend() ; plt.show()

pd.Series(avg_residuals, index=Ns, name='Avg Residual')

3.1 方形功能:

来源:笔记本

N      Avg. Residual
--------------------
8      1.311711
16     0.784683
32     0.440387
64     0.268449
128    0.154604

3.2 线路功能:

来源:笔记本

N      Avg. Residual
--------------------
8      0.447389
16     0.264635
32     0.153540
64     0.088745
128    0.052147

3.3 正态分布

  • 在 [0, 12] 中缩放 y,其中:
    - 平均值 = 100- 标准 = 0.1 *sqrt(5)*100- a = 100 -12 * 标准
    - b = 100

    +12 * 标准

来源:笔记本

N      Avg. Residual
--------------------
8      1.092374e-01
16     8.326020e-05
32     6.878539e-14
64     5.721031e-14
128    5.170898e-14

3.3 议论

  1. 所有分布都按比例缩放,使 y 范围从 [0,12] 开始,因此我们可以比较残差的大小。
  2. 从绘图和残差可以看出,函数的曲线越大,傅里叶级数收敛到正确值的速度就越快。我们将此属性用作正态,并且对数正态不需要很多项来计算,在我们的近似中具有足够的准确性。
  3. 数据开头和结尾的误差明显更高。因此,最好包含比预期使用的限制更高的限制。例如,当您需要 ±4 时计算 ±3std。这使得深度价外期权更难计算。

四、第3部分  S(T)的对数正态分布

        S_T遵循 Q 下的简单 GBM,我们可以使用以下等式推导出S_T的概率密度:

        现在我们可以使用以下函数在 Python 中定义 f(S_T),并将下限定义为 ( 0, S_0*exp(r*T) + 12 * sigma*sqrt(T)*S_0 )

S0      = 100
r       = 0.05
sigma   = 0.1
T       = 5.0

Z = lambda St : np.where(St > 0, ((log(St/S0) - (r - .5*sigma)*T)/(sqrt(T)*sigma)), -np.inf)
f = lambda x : norm.pdf(Z(x))

a   = S0*exp(r*T) - 12 * sigma*sqrt(T)*S0
b   = S0*exp(r*T) + 12 * sigma*sqrt(T)*S0

Source: Notebook

N       Avg. (scaled) Residual      Avg. Residual       Execution Time (sec)
----------------------------------------------------------------------------
8       0.176429                    5.880975e-03        0.112720
16      0.004235                    1.411566e-04        0.246473
32      0.000030                    9.855127e-07        0.624209
64      0.000027                    8.918504e-07        1.936948
128     0.000026                    8.530034e-07        6.741019

4.1 言论:

  1. 我包括了缩放和非缩放残差。缩放残差对应于(不正确的)缩放概率,使得 max{y}=12,其中(正确的)非缩放,max{y}=0.4。这样做是为了将对数正态分布的拟合与上面绘制的其他函数进行比较。
  2. 我们可以推断出,由于形状不对称,对数正态分布比正态分布更难拟合。
  3. 我们可以看到,在非缩放版本中有 64 项,计算 P(S_T=x) 的预期误差非常小,小于 0.0001%。
  4. 分布集中在 T 处的期望值周围非常重要,12stds 左右对称。 我做了一个版本,其中a和b不对称,残差不均匀分布。直觉上,你会采取 a=0+,但它不会产生理想的结果。*S_T残差是针对 S_T>0 的值计算的,因为这是不可能的,我们不关心小于 0 的值。

a=1e-8 的S_T密度,在残差处表现出不良性质。来源:笔记本

4.2 限制 — 缺点 — 改进:

  1. 将前面提到的任何函数近似为傅里叶级数并使用数值积分作为计算 An 和 Bn 的手段没有任何好处。
  2. 分析计算 An 和 Bn 系数非常重要,因此唯一的数值部分是计算序列。
  3. 好处在别处。当f(x)没有显式形式并且需要数值积分时,我们可以用特征函数和傅里叶级数半解析地解决问题。
  4. 如果我们在 Python 中使用 scipy.norm 为带有标准 BS 的选项定价,大约需要 0.06 毫秒。
    但是,如果我们解析求解积分 A0、An、Bn 并使用复数版本,我们会得到大约 0.6 毫秒,这是可比的。我们将在第 3 部分中在 Heston 模型中使用它,该模型是此类期权定价的行业标准。

下一篇:第 2 部分

媒介:链接

在下一篇文章中,我们将了解如何将这些知识与特征函数(虚数的使用)结合使用,以使用标准布莱克-斯科尔斯模型计算欧洲看涨期权的值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1057163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

InnoDB索引机制

导学:索引什么时候失效?为什么类型转换索引会失效?不满足最左匹配原则? 我们都知道,MySQL它主要有2大模快组成,第一块就是我们的MySQL服务,里面包含了像连接管理、解析器、预处理、优化器、执行…

数据分析:人工智能篇

文章目录 第三章 数据可视化库matplotlib3.1 matplotlib基本绘图操作3.2 plot的线条和颜色3.3 条形图分析3.4 箱型图分析3.5 直方图分析3.6 散点图分析3.7 图表的美化 第四章 数据预测库Sklearn4.1 sklearn预测未来4.2 回归数据的预测4.2.1 回归数据的切分4.2.2 线性回归数据模…

【vue3】shallowReactive与shallowRef;readonly与shallowReadonly;toRaw与markRaw

假期第六篇,对于基础的知识点,我感觉自己还是很薄弱的。 趁着假期,再去复习一遍 1、shallowReactive与shallowRef shallowReactive:只处理对象最外层属性的响应式(浅响应式) shallowRef:只处理…

2023 彩虹全新 SUP 模板,卡卡云模板修复版

2023 彩虹全新 SUP 模板,卡卡云模板,首页美化,登陆页美化,修复了 PC 端购物车页面显示不正常的问题。 使用教程 将这俩个数据库文件导入数据库; 其他的直接导入网站根目录覆盖就好; 若首页显示不正常&a…

华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos

华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品优势1.3 应用场景1.4 支持镜像 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 memos3.1 memos介绍3.2 Docker 环境搭建…

服务器挂机

title: “服务器挂机” createTime: 2022-05-11T11:05:4308:00 updateTime: 2022-05-11T11:05:4308:00 draft: false author: “name” tags: [“服务器”] categories: [“服务器”] description: “测试的” 服务器挂机策略 地址:pve.dongshanxia.top:35000用户…

安装软件显示“为了对电脑进行保护,已阻止此应用”——已解决

我是在安装Tableau时遇到的这个情况。事情是这样的:我先安装了一次,发现安装选项错了,我就用360软件管家删除了,结果就没法按照教程使用管理员身份打开了,提示“为了对电脑进行保护,已阻止此应用”。 解决…

Git使用【下】

欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析(3) 目录 👉🏻标签管理理解标签标签运用 …

VUE3照本宣科——应用实例API与setup

VUE3照本宣科——应用实例API与setup 前言一、应用实例API1.createApp()2.app.use()3.app.mount() 二、setup 前言 👨‍💻👨‍🌾📝记录学习成果,以便温故而知新 “VUE3照本宣科”是指照着中文官网和菜鸟教…

IntelliJ IDEA 常用快捷键

目录 一、IDEA 常用快捷键 1 通用型 2 提高编写速度 3 类结构、查找和查看源码 4 查找、替换与关闭 5 调整格式 二、Debug快捷键 三、查看快捷键 1、已知快捷键操作名,未知快捷键 2、已知快捷键,不知道对应的操作名 3、自定义快捷键 4、使用…

nginx多文件组织

背景: nginx的话,有时候,想部署多个配置,比如:使用不同的端口配置不同的web工程。 比如:8081部署:项目1的web页面。 8082部署:项目2的web页面。 1)nginx.conf worker_processes…

javascript: Bubble Sort

// Sorting Algorithms int JavaScript /** * file Sort.js * 1. Bubble Sort冒泡排序法 */ function BubbleSort(arry, nszie) {var i, j, temp;var swapped;for (i 0; i < nszie - 1; i){swapped false;for (j 0; j < nszie - i - 1; j){if (arry[j] > arry[j …

Java EE改Jakarta

昨天折腾了一天&#xff0c;把旧项目升级了 旧项目运行环境 jdk &#xff1a;jdk1.7 TomCat&#xff1a;TomCat8.0 或者 TomCat 8.5 Eclipse 2022-12 spring&#xff1a;spring-2.5.6.jar Hibernate&#xff1a;hibernate-3.2.6.ga.jar Struts&#xff1a;struts2-core-2.1.6.…

macbook电脑磁盘满了怎么删东西?

macbook是苹果公司的一款高性能笔记本电脑&#xff0c;受到很多用户的喜爱。但是&#xff0c;如果macbook的磁盘空间不足&#xff0c;可能会导致一些问题&#xff0c;比如无法开机、运行缓慢、应用崩溃等。那么&#xff0c;macbook磁盘满了无法开机怎么办&#xff0c;macbook磁…

CleanMyMac X苹果电脑清理浏览器缓存工具

苹果电脑是一款优秀的电脑产品&#xff0c;但是随着使用时间的增长&#xff0c;苹果电脑也会出现一些问题&#xff0c;比如运行速度变慢、占用空间过大、出现错误提示等&#xff0c;这些问题往往和缓存有关。缓存是一种临时存储数据的方式&#xff0c;可以提高电脑的运行效率和…

c#基础逻辑练习案例

第二章综合练习小游戏 练习内容 向控制台输出“这是学号姓名的C#基础小游戏”。向控制台换行再输出“请输入你的游戏昵称&#xff1a;”。向控制台输入你的游戏昵称&#xff0c;赋给一个字符串变量。向控制台换行再输出“请输入你的性别&#xff1a;”。向控制台输入你的性别…

LeetCode 面试题 08.02. 迷路的机器人

文章目录 一、题目二、C# 题解 一、题目 设想有个机器人坐在一个网格的左上角&#xff0c;网格 r 行 c 列。机器人只能向下或向右移动&#xff0c;但不能走到一些被禁止的网格&#xff08;有障碍物&#xff09;。设计一种算法&#xff0c;寻找机器人从左上角移动到右下角的路径…

Office 2021 小型企业版商用办公软件评测:提升工作效率与协作能力的专业利器

作为一名软件评测人员&#xff0c;我将为您带来一篇关于 Office 2021 小型企业版商用办公软件的评测文章。在这篇评测中&#xff0c;我将从实用性、使用场景、优点和缺点等多个方面对该软件进行客观分析&#xff0c;在专业角度为您揭示它的真正实力和潜力。 一、实用性&#xf…

数据结构—归并排序-C语言实现

引言&#xff1a;归并排序跟快速排序一样&#xff0c;都运用到了分治的算法&#xff0c;但是归并排序是一种稳定的算法&#xff0c;同时也具备高效&#xff0c;其时间复杂度为O(N*logN) 算法图解&#xff1a; 然后开始归并&#xff1a; 就是这个思想&#xff0c;拆成最小子问题…

mysql八股

1、请你说说mysql索引&#xff0c;以及它们的好处和坏处 检索效率、存储资源、索引 索引就像指向表行的指针&#xff0c;是一个允许查询操作快速确定哪些行符合WHERE子句中的条件&#xff0c;并检索到这些行的其他列值的数据结构索引主要有普通索引、唯一索引、主键索引、外键…