竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉

news2024/11/30 6:47:04

文章目录

  • 0 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习多目标跟踪 实时检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新


if FLAGS.mode == ‘eager_tf’:
# Eager mode is great for debugging
# Non eager graph mode is recommended for real training
avg_loss = tf.keras.metrics.Mean(‘loss’, dtype=tf.float32)
avg_val_loss = tf.keras.metrics.Mean(‘val_loss’, dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1054917.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【笔试强训day01】组队竞赛 删除公共字符

​👻内容专栏: 笔试强训集锦 🐨本文概括:C笔试面试常考题之笔试强训day01。 🐼本文作者: 阿四啊 🐸发布时间:2023.10.1 一、day01 1.组队竞赛 题目描述 题目描述:牛牛举…

【JavaEE】JavaScript

JavaScript 文章目录 JavaScript组成书写方式行内式内嵌式外部式(推荐写法) 输入输出变量创建动态类型基本数据类型数字类型特殊数字值 String转义字符求长度字符串拼接布尔类型undefined未定义数据类型null 运算符条件语句if语句三元表达式switch 循环语…

【算法|贪心算法系列No.3】leetcode334. 递增的三元子序列

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…

[C++_containers]10分钟让你掌握vector

前言 在一个容器的创建或是使用之前,我们应该先明白这个容器的一些特征。 我们可以通过文档来来了解,当然我也会将重要的部分写在下面。 1. vector 是表示可变大小数组的序列容器。 2. 就像数组一样, vector 也采用的连续存储空间来存储元…

picoctf_2018_shellcode

picoctf_2018_shellcode Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX disabled PIE: No PIE (0x8048000) RWX: Has RWX segments32位,啥都没开 这个看着挺大的,直接来个ROPchain,…

Mapfree智驾方案,怎样实现成本可控?

整理|睿思 编辑|祥威 编者注:本文是HiEV出品的系列直播「智驾地图之变」第二期问答环节内容整理。 元戎启行副总裁刘轩与连线嘉宾奥维咨询董事合伙人张君毅、北汽研究总院智能网联中心专业总师林大洋、主持嘉宾周琳展开深度交流,并进行了答疑。 本期元…

新手--安装好Quartus II13.0(带modelsim集成包)并用Quartus II搭建一个工程

前言 今天是国庆节,我们正式来学习Quartus II13.0软件的安装与使用。学习verilog与学习C语言都是学习一门语言,那么学习一门语言,光看理论不敲代码绝对是学习不好的。要用verilog语言敲代码,就要像C语言那样搭建起语言的编译环境&…

USART串口协议

通信接口 •通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统 • 通信协议:制定通信的规则,通信双方按照协议规则进行数据收发 全双工:指通信双方能够同时进行双向通信,一般来说,全双…

扩容领跑者 Arbitrum 抢占 Layer3 竞争高地

近段时间以来,Arbitrum 凭借创新技术和优越生态系统逐渐成为顶尖的以太坊扩容解决方案。当新一轮 Layer3 竞争在 Rollup 领域展开时,Arbitrum 和 Optimism 始终是备受瞩目的两大角色。Optimism 以独特的 OP Stack 进行水平扩展,而 Arbitrum 则…

K-Means(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

shell脚本使用(宿主机windows-服务器-centos)--用于使用shell脚本方式控制docker容器

需求: 我想要使得windows上编写shell脚本,并且在这个shell脚本在linux中也可用 shell脚本在windows上无法直接运行,但是有WSL这个linux子系统的工具 可以使得shell脚本在主机上执行 视频讲解连接 https://www.bilibili.com/video/BV1Tw411Y7FP/方式1 …

Object.defineProperty()方法详解,了解vue2的数据代理

假期第一篇,对于基础的知识点,我感觉自己还是很薄弱的。 趁着假期,再去复习一遍 Object.defineProperty(),对于这个方法,更多的还是停留在面试的时候,面试官问你vue2和vue3区别的时候,不免要提一提这个方法…

【VIM】VIm-plug插件

如何查找需要的插件 https://github.com/mhinz/vim-startify https://github.com/vim-airline/vim-airline https://github.com/Yggdroot/indentLine github.com/w0ng/vim-hybrid github.com/altercationi/vim-colors-solarized guithub.com/morhetz/gruvbox github.com/sc…

cesium 雷达扫描 (波纹线性雷达扫描效果)

cesium 雷达扫描 (波纹线性雷达扫描效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1 <!DOCTYPE html> <html lang="en"><head>&l

NSSCTF做题(3)

[鹤城杯 2021]EasyP 代码审计 <?php include utils.php; if (isset($_POST[guess])) { $guess (string) $_POST[guess]; if ($guess $secret) {//两个变量相等 $message Congratulations! The flag is: . $flag; } else { $message Wron…

java多线程相关介绍

1. 线程的创建和启动 在 Java 中创建线程有两种方式。一种是继承 Thread 类并重写其中的 run() 方法&#xff0c;另一种是实现 Runnable 接口并重写其中的 run() 方法。创建完线程对象后&#xff0c;调用 start() 方法可以启动线程。 2. 线程的状态 Java 的线程在不同阶段会处于…

计算机竞赛 深度学习火车票识别系统

文章目录 0 前言1 课题意义课题难点&#xff1a; 2 实现方法2.1 图像预处理2.2 字符分割2.3 字符识别部分实现代码 3 实现效果4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 图像识别 火车票识别系统 该项目较为新颖&#xff0c;适…

牛客网_HJ2_计算某字符出现次数

HJ2_计算某字符出现次数 原题思路代码运行截图收获 原题 HJ2_计算某字符出现次数 思路 把输入的字符串和字符都变成大写或小写&#xff0c;然后逐一计数 代码 #include <cctype> #include <iostream> #include <string> #include <algorithm> usi…

Python3数据科学包系列(二):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 一&#xff1a;通过read_table函数读取数据创建(DataFrame)数据框 #…

数据结构:复杂度分析

目录 1 算法效率评估 1.1 实际测试 1.2 理论估算 2 迭代与递归 2.1 迭代 1. for 循环 2. while 循环 3. 嵌套循环 2.2 递归 1. 调用栈 2. 尾递归 3. 递归树 2.3 两者对比 3 时间复杂度 3.1 统计时间增长趋势 3.2 函数渐近上界…