计算机竞赛 深度学习火车票识别系统

news2024/11/30 8:59:38

文章目录

  • 0 前言
  • 1 课题意义
    • 课题难点:
  • 2 实现方法
    • 2.1 图像预处理
    • 2.2 字符分割
    • 2.3 字符识别
      • 部分实现代码
  • 3 实现效果
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 图像识别 火车票识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题意义

在这里插入图片描述

目前火车乘务员在卧铺旅客在上车前为其提供将火车票换成位置信息卡服务,在旅客上车前,由于上车人数多,而且大多数旅客都携带大量行李物品,而且乘车中老人和小孩也较多。在换卡这一过程中,人员拥挤十分厉害,而且上火车时,火车门窄阶梯也较陡,危险系数十分高。乘务员维持秩序十分困难。换卡之后,在旅客下车之前乘务员又要将位置信息卡换成火车票。这一过程冗长且对于旅客基本没有任何有用的意义。如果通过光学符识别软件,乘务员利用ipad等电子产品扫描采集火车票图像,读取文本图像,通过识别算法转成文字,将文字信息提取出来,之后存储起来,便于乘务员统计查看,在旅客到站是,系统自动提醒乘务员某站点下车的所有旅客位置信息。随着铁路交通的不断优化,车次与旅客人数的增加,火车票免票系统将更加便捷,为人们带来更好的服务。

课题难点:

由于火车票票面文字识别属于多种字体混排,低品质的专用印刷汉子识别。火车票文字笔画粘连,断裂,识别复杂度高,难度大,采用目前较好的OCR技术都比较难以实现。

2 实现方法

2.1 图像预处理

火车票经过扫描装置火车照相机等装置将图像传递到计算机,经过灰度处理保存为一幅灰度图。如果要对火车票进行后期的识别,那么就一定要对图像做二值化,之后再对二值化的图像进行版面分析,确定我们所需要的信息所在,之后才能进行单个字符的分割,才能对字符做提取特征点的工作,之后按照我们对比确定的规则来进行判决从而达到识别效果。

由于火车票容易被污损、弯折,而且字符的颜色也是有所不同,火车票票号是红色,而其他信息显示则为黑色,票面的背景包括红色和蓝色两种彩色,这些特点都使得火车票的文字识别不同于一般的文字识别。在识前期,要对火车票图像做出特定的处理才能很好的进行后续的识别。本次课题所研究的预处理有平常所处理的二值化,平滑去噪之外还需要针对不同字符颜色来进行彩色空间上的平滑过滤。

预处理流程如下所示

在这里插入图片描述

2.2 字符分割

字符分割就是在版面分析后得到的文本块切分成为文字行,之后再将行分割成单个字符,来进行后续的字符识别。这是OCR系统里至关重要的一环,直接影响识别效果。字符分割的主流方式有三种,一种是居于图像特种来寻找分割的准则,这是从结构角度进行分析切割。另一种方式是根据识别效果反馈来确认分割结果有无问题,这种方式是基于识别的切分。还有一种整体切分方式,把字符串当做整体,系统进行以词为基础的识别比并非字识别,一般这一方式要根据先验知识来进行辅助判断。

分割效果如下图所示:
在这里插入图片描述
在这里插入图片描述

2.3 字符识别

中文/数字/英文 识别目前最高效的方法就是使用深度学习算法进行识别。

字符识别对于深度学习开发者来说是老生常谈了,这里就不在复述了;

网络可以视为编解码器结构,编码器由特征提取网络ResneXt-50和双向长短时记忆网络(BiLSTM)构成,解码器由加入注意力机制的长短时记忆网络(LSTM)构成。网络结构如下图所示。

在这里插入图片描述

网络训练流程如下:
在这里插入图片描述

部分实现代码

这里学长提供一个简单网络字符识别的训练代码:
(需要完整工程及代码的同学联系学长获取)

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#1、开始建立一个图
sess = tf.InteractiveSession()#启动一个交互会话
x = tf.placeholder(tf.float32, shape=[None, 784])#x和y_都用一个占位符表示
y_ = tf.placeholder(tf.float32, shape=[None, 10])

W = tf.Variable(tf.zeros([784, 10]))#W和b因为需要改变,所以定义为初始化为0的变量
b = tf.Variable(tf.zeros(10))

#2、建立预测部分的操作节点
y = tf.matmul(x,W) + b  #计算wx+b
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) #计算softmax交叉熵的均值

#3、现在已经得到了损失函数,接下来要做的就是最小化这一损失函数,这里用最常用的梯度下降做
# 为了用到前几节说过的内容,这里用学习率随训练下降的方法执行
global_step = tf.Variable(0, trainable = False)#建立一个可变数,而且这个变量在计算梯度时候不被影响,其实就是个全局变量
start_learning_rate = 0.5#这么写是为了清楚
#得到所需的学习率,学习率每100个step进行一次变化,公式为decayed_learning_rate = learning_rate * decay_rate ^(global_step / decay_steps)
learning_rate = tf.train.exponential_decay(start_learning_rate, global_step, 10, 0.9, staircase=True)

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)#梯度下降最小化交叉熵
#这是因为在交互的Session下可以这样写Op.run(),还可以sess.run(tf.global_variables_initializer())
tf.global_variables_initializer().run()#初始化所有变量

#iteration = 1000, Batch_Size = 100 
for _ in range(1000):
    batch = mnist.train.next_batch(100)#每次选出100个数据
    train_step.run(feed_dict = {x:batch[0], y_: batch[1]})#给Placeholder填充数据就可以了

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #首先比较两个结果的差异
#这时的correct_prediction应该类似[True, False, True, True],然后只要转为float的形式再求加和平均就知道准确率了
#这里的cast是用于形式转化
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
#打印出来就可以了,注意这个时候accuracy也只是一个tensor,而且也只是一个模型的代表,还需要输入数据
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

sess.close()

#首先把要重复用的定义好
def weight_variable(shape):
    initial = tf.truncated_normal(shape=shape, stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)#常量转变量,
    return tf.Variable(initial)
def conv2d(x, f):
    return tf.nn.conv2d(x, f, strides=[1,1,1,1], padding='SAME')
def max_pool_22(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

sess = tf.InteractiveSession()#启动一个交互会话
x = tf.placeholder(tf.float32, shape=[None, 784])#x和y_都用一个占位符表示
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
#第一层:
#1、设计卷积核1
fW1 = weight_variable([5,5,1,32])#[height, weight, in_channel, out_channel]
fb1 = bias_variable([32])

#2、卷积加池化
h1 = tf.nn.relu(conv2d(x_image,fW1)+ fb1)
h1_pool = max_pool_22(h1)

#第二层
fW2 = weight_variable([5,5,32,64])#[height, weight, in_channel, out_channel]
fb2 = bias_variable([64])

h2 = tf.nn.relu(conv2d(h1_pool,fW2)+ fb2)
h2_pool = max_pool_22(h2)

#全部变成一维全连接层,这里因为是按照官方走的,所以手动计算了经过第二层后的图片尺寸为7*7
#来定义了一个wx+b所需的w和b的尺寸,注意这里的W和b不是卷积所用的了
h2_pool_flat = tf.reshape(h2_pool, [-1, 7*7*64])#首先把数据变成行表示
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h2_pool_flat, W_fc1) + b_fc1)

#定义dropout,选择性失活,首先指定一个失活的比例
prob = tf.placeholder(tf.float32)
h_dropout = tf.nn.dropout(h_fc1, prob)

#最后一个全连接层,输出10个值,用于softmax
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_dropout, W_fc2) + b_fc2

#梯度更新,这里采用另一种优化方式AdamOptimizer
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#初始化
sess.run(tf.global_variables_initializer())
for i in range(2000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y_:batch[1], prob:1.0}) #这里是计算accuracy用的eval,不是在run一个Operation
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, prob: 1.0}) )

3 实现效果

车票图
在这里插入图片描述
识别效果:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1054887.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

牛客网_HJ2_计算某字符出现次数

HJ2_计算某字符出现次数 原题思路代码运行截图收获 原题 HJ2_计算某字符出现次数 思路 把输入的字符串和字符都变成大写或小写&#xff0c;然后逐一计数 代码 #include <cctype> #include <iostream> #include <string> #include <algorithm> usi…

Python3数据科学包系列(二):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 一&#xff1a;通过read_table函数读取数据创建(DataFrame)数据框 #…

数据结构:复杂度分析

目录 1 算法效率评估 1.1 实际测试 1.2 理论估算 2 迭代与递归 2.1 迭代 1. for 循环 2. while 循环 3. 嵌套循环 2.2 递归 1. 调用栈 2. 尾递归 3. 递归树 2.3 两者对比 3 时间复杂度 3.1 统计时间增长趋势 3.2 函数渐近上界…

Unity HDRP Custom Pass 实现场景雪地效果

先使用Shader Graph连一个使用模型法线添加雪地的shader&#xff0c;并赋给一个material。 1.1 先拿到模型世界坐标下的顶点法线&#xff0c;简单处理一下&#xff0c;赋给透明度即可。 给场景添加Custom Pass&#xff0c;剔除不需要的层级。 1.在Hierarchy界面中&#xff…

Ps:选择高光阴影中间调的方法

素描中的三大面&#xff1a;明面、灰面及暗面&#xff0c;基本上可对应数字图像中的高光、中间调和阴影。选出数字图像的这三大区域&#xff0c;可快速进行分级调色。 说明&#xff1a; 在练习过程中&#xff0c;为了更清楚地识别选择的范围&#xff0c;可以建立一个从黑到白的…

Promise击鼓传花的游戏

Promise击鼓传花的游戏 Promise系列导航前言一、学习Promise的原因二、揭开击鼓传花游戏的面纱补充小知识 Promise系列导航 1.Promise本质击鼓传花的游戏 2.Promise四式击鼓 3.Promise击鼓传花 4.Promise花落谁家知多少 前言 &#x1f468;‍&#x1f4bb;&#x1f468;‍&…

竞赛 大数据房价预测分析与可视

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 大数据房价预测分析与可视 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&#xff0c;适合…

Spring5 自定义标签开发

spring5 自定义脚本开发步骤 1 定义bean&#xff0c; public class User {private String id;private String userName;private String email;private String password;public String getId() {return id;}public void setId(String id) {this.id id;}public String getUser…

计组+系统02:30min导图复习 存储系统

&#x1f433;前言 图源&#xff1a;文心一言 考研笔记整理&#xff0c;纯复习向&#xff0c;思维导图基本就是全部内容了&#xff0c;不会涉及较深的知识点~~&#x1f95d;&#x1f95d; 第1版&#xff1a;查资料、画思维导图~&#x1f9e9;&#x1f9e9; 编辑&#xff1a;…

C 语言关键字_at_的使用

查看一些老旧代码的时候看到有这么一段。 这个函数是轮询执行的&#xff0c;但是sourceinsight却没有找到vs_ucLedSegDutyRam的定义&#xff0c;全局搜索才找得到&#xff0c;结果发现原来它的定义很奇特。 里面用了_at_这个东西 _at_是让定义的vs_ucLedSegDutyRam首地址定义在…

常说的I2C协议是干啥的(电子硬件)

I2C&#xff08;Inter-Integrated circuit&#xff09;协议是电子传输信号中常用的一种协议。 它是一种两线式串行双向总线&#xff0c;用于连接微控制器和外部设备&#xff0c;也因为它所需的引脚数只需要两条&#xff08;CLK和DATA&#xff09;&#xff0c;硬件实现简单&…

机器人入门(一)

机器人入门&#xff08;一&#xff09; 一、ROS是什么&#xff0c;能用来干什么&#xff1f;二、哪些机器人用到了ROS&#xff1f;三、ROS和操作系统是绑定的吗&#xff1f;四、ROS 1 和ROS 2的关系是什么&#xff1f;4.1架构中间件改变API改变数据格式改变 4.2特性4.3工具/生态…

JavaScript中如何确定this的值?如何指定this的值?

&#x1f380;JavaScript中的this 在绝大多数情况下&#xff0c;函数的调用方法决定了this的值&#xff08;运行时绑定&#xff09;。this不能在执行期间被赋值&#xff0c;并且在每次函数呗调用时this的值也可能会不同。 &#x1f37f;如何确定this的值&#xff1a; 在非严格…

计算机竞赛 深度学习机器视觉车道线识别与检测 -自动驾驶

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…

209. 长度最小的子数组(滑动窗口)

一、题目 209. 长度最小的子数组 - 力扣&#xff08;LeetCode&#xff09; 二、代码 class Solution { public:int minSubArrayLen(int target, vector<int>& nums) {int left 0, right 0;int sum nums[right];int MinLength INT_MAX;while (left <nums.siz…

【React】React组件生命周期以及触发顺序(部分与vue做比较)

最近在学习React&#xff0c;发现其中的生命周期跟Vue有一些共同点&#xff0c;但也有比较明显的区别&#xff0c;并且执行顺序也值得讨论一下&#xff0c;于是总结了一些资料在这里&#xff0c;作为学习记录。 v17.0.1后生命周期图片 初始化阶段 由ReactDOM.render()触发 —…

openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置

文章目录 openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置86.1 总体原则86.2 重做日志&#xff08;MOT&#xff09;86.3 检查点&#xff08;MOT&#xff09;86.4 恢复&#xff08;MOT&#xff09;86.5 统计&#xff08;MOT&#xff09;86…

【C++】unordered_set、unordered_map的介绍及使用

unordered_set、unordered_map的介绍及使用 一、unordered系列关联式容器二、unordered_map and unordered_multimap1、unordered_map的介绍2、unordered_map的使用&#xff08;1&#xff09;定义&#xff08;2&#xff09;接口使用 3、unordered_multimap 二、unordered_set a…

集合在多线程下安全问题

如果在多线程下&#xff0c;同时操作同一个数据源&#xff0c;就会出现数据安全问题&#xff1a; A线程取出值为10&#xff0c;准备加5. 同时B线程也取出来10&#xff0c;减了5 C取出的时候有可能时15&#xff0c;也有可能时5。产生了数据安全问题。 方法有很多例如&#xff1a…

消息队列-RabbitMQ(二)

接上文《消息队列-RabbitMQ&#xff08;一&#xff09;》 Configuration public class RabbitMqConfig {// 消息的消费方json数据的反序列化Beanpublic RabbitListenerContainerFactory<?> rabbitListenerContainerFactory(ConnectionFactory connectionFactory){Simple…