【算法训练-贪心算法】一 买卖股票的最佳时机II

news2024/11/25 21:49:08

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【贪心算法】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。
在这里插入图片描述

名曲目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

买卖股票的最佳时机II【MID】

难度升级,股票可以反复买卖,不是只买卖一次,还是求最大收益

题干

在这里插入图片描述

解题思路

整体使用贪心算法实现:

  • 对于单独交易日: 设今天价格 p1 、明天价格 p2 ,则今天买入、明天卖出可赚取金额 p2−p1(负值代表亏损)。
  • 对于连续上涨交易日: 设此上涨交易日股票价格分别为 p1,p2,…,pn,则第一天买最后一天卖收益最大,即 pn−p1 ;等价于每天都买卖,即 pn−p1=(p2−p1)+(p3−p2)+…+(pn−pn−1)p_n - p_1=(p_2 - p_1)+(p_3 - p_2)+…+(p_n - p_{n-1})
  • 对于连续下降交易日: 则不买卖收益最大,即不会亏钱。

在这里插入图片描述
遍历整个股票交易日价格列表 price,并执行贪心策略:所有上涨交易日都买卖(赚到所有利润),所有下降交易日都不买卖(永不亏钱)

  1. 设 tmp 为第 i-1 日买入与第 i 日卖出赚取的利润,即 tmp = prices[i] - prices[i - 1] ;
  2. 当该天利润为正 tmp > 0,则将利润加入总利润 profit;当利润为 0 或为负,则直接跳过;
  3. 遍历完成后,返回总利润 profit

代码实现

给出代码实现基本档案

基本数据结构数组
辅助数据结构
算法贪心算法
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;


public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 计算最大收益
     * @param prices int整型一维数组 股票每一天的价格
     * @return int整型
     */
    public int maxProfit (int[] prices) {
        // 1 定义总利润
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            // 2 获取当天利润
            int curProfit = prices[i] - prices[i - 1];
            // 3 只有当天利润为正值才计入总利润
            maxProfit = Math.max(curProfit, 0) + maxProfit;
        }

        return maxProfit;
    }
}

复杂度分析

时间复杂度:遍历了一遍数组,所以时间复杂度为O(N)
空间复杂度:没有借助额外空间,空间复杂度为O(1)

拓展知识:动态规划与贪心算法

动态规划

动态规划(Dynamic Programming,简称DP)是一种解决复杂问题的算法设计技术,常用于优化问题和组合问题的求解。它通过将原问题分解成子问题,并保存子问题的解,以避免重复计算,从而提高算法的效率。动态规划通常用于解决具有重叠子问题和最优子结构性质的问题。

动态规划的基本思想可以总结为以下几个步骤:

  1. 定义问题的状态:首先要明确定义问题的状态,这些状态可以用来描述问题的各种情况。

  2. 找到状态转移方程:状态转移方程描述了问题之间的联系,即如何从一个状态转移到另一个状态。这通常涉及到问题的递归关系,通过这个关系可以从较小规模的子问题得到更大规模的问题的解。

  3. 初始化状态:确定初始状态的值,这通常是问题规模最小的情况下的解。

  4. 自底向上或自顶向下求解:动态规划可以采用自底向上(Bottom-Up)或自顶向下(Top-Down)的方式求解问题。自底向上是从最小的状态开始逐步计算,直到得到最终问题的解;自顶向下是从最终问题开始,递归地计算子问题的解,直到达到最小状态。

  5. 根据问题的要求,从状态中找到最终解

动态规划常见的应用领域包括:

  1. 最长公共子序列问题:在两个序列中找到一个最长的共同子序列,用于比较字符串相似性。

  2. 背包问题:在给定一定容量的背包和一组物品的情况下,选择一些物品放入背包,使得物品的总价值最大或总重量不超过背包容量。

  3. 最短路径问题:求解图中两点之间的最短路径,如Dijkstra算法和Floyd-Warshall算法。

  4. 硬币找零问题:给定一组硬币面额和一个目标金额,找到使用最少数量的硬币组合成目标金额。

  5. 斐波那契数列问题:求解斐波那契数列的第n个数,通过动态规划可以避免重复计算。

动态规划是一种强大的问题求解方法,但它并不适用于所有类型的问题。在使用动态规划时,需要仔细分析问题的性质,确保问题具有重叠子问题和最优子结构性质,以确保动态规划算法能够有效地解决问题。

贪心算法

贪心算法(Greedy Algorithm)是一种常用的问题求解策略,通常用于解决最优化问题,如最短路径、最小生成树、背包问题等。贪心算法的基本思想是每一步都选择当前状态下的最优解,而不考虑全局的最优解,希望通过局部最优的选择最终达到全局最优。贪心算法通常是一种高效的方法,但并不是所有问题都适合使用贪心算法,因为有些问题的最优解不一定可以通过贪心选择得到。

贪心算法的一般步骤如下:

  1. 定义问题的优化目标,明确问题的约束条件

  2. 从问题的初始状态开始,通过一系列选择,每次选择局部最优解,更新当前状态

  3. 检查是否满足问题的约束条件和终止条件。如果不满足,则回到第2步继续选择;如果满足,则算法结束。

  4. 对于某些问题,需要证明贪心选择的局部最优解确实能够导致全局最优解,这需要数学证明或者举出反例。

以下是一些常见的问题,可以使用贪心算法解决:

  1. 最小生成树问题:如Kruskal算法和Prim算法用于寻找无向图中的最小生成树。

  2. 最短路径问题:如Dijkstra算法用于寻找图中两点之间的最短路径。

  3. 背包问题:如分数背包问题0/1背包问题,可以使用贪心算法进行求解。

  4. 活动选择问题:如贪心选择活动安排最多的问题,可以使用贪心算法求解。

需要注意的是,并非所有问题都适合使用贪心算法,因为有些问题的最优解可能需要全局搜索或者动态规划等其他算法。因此,在应用贪心算法之前,需要仔细分析问题的特点和性质,以确定贪心算法是否合适。

动态规划与贪心算法区别

动态规划(Dynamic Programming)和贪心算法(Greedy Algorithm)都是常见的问题求解策略,但它们在问题求解时有很大的区别,适用于不同类型的问题和场景。

区别:

  1. 最优子结构性质:

    • 动态规划:动态规划问题通常具有最优子结构性质,即全局最优解可以通过子问题的最优解来构造。动态规划通常涉及到将问题划分为重叠的子问题,然后利用这些子问题的解来构建全局最优解。
    • 贪心算法:贪心算法通常涉及到每一步选择当前状态下的最优解,但不一定具有最优子结构性质。贪心算法通常是通过一系列局部最优选择来达到全局最优,但不能保证一定能够得到全局最优解。
  2. 选择的灵活性:

    • 动态规划:在动态规划中,可以在每个子问题中考虑多种选择,并计算每种选择的代价或价值,然后选择最优的。通常需要一个状态转移方程来描述问题的子结构和递归关系。
    • 贪心算法:贪心算法在每一步都选择当前状态下的最优解,不考虑其他选择的影响。它通常适用于问题具有"贪心选择性质"的情况,即通过局部最优选择能够得到全局最优解。

问题解决场景:

  1. 动态规划适用场景:

    • 当问题的最优解可以通过子问题的最优解来构造时,通常使用动态规划。典型问题包括:
      • 最短路径问题(如Dijkstra算法)
      • 最长公共子序列问题
      • 背包问题(如0/1背包问题)
      • 编辑距离问题
    • 需要存储和重用子问题的解,通常使用表格或数组来实现。
  2. 贪心算法适用场景:

    • 当问题具有贪心选择性质,即通过每一步的局部最优选择能够达到全局最优时,可以使用贪心算法。典型问题包括:
      • 最小生成树问题(如Prim算法和Kruskal算法)
      • 哈夫曼编码问题
      • 活动选择问题
      • 货币找零问题
    • 贪心算法通常更简单和高效,但不能解决所有问题,因为它没有全局的视野。

总之,动态规划和贪心算法是两种不同的问题求解策略,根据问题的特性和要求选择合适的算法非常重要。有些问题可以同时使用这两种策略的思想,即使用贪心算法的局部最优性来设计动态规划的状态转移方程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1053547.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源校园服务小程序源码 校园综合服务小程序源码 包含快递代取 打印服务 校园跑腿【带详细部署教程】

校园综合服务小程序开源源码是一款功能强大的小程序&#xff0c;可用于搭建校园综合服务平台。共有6个选项可供选择&#xff0c;包括快递代取、打印服务、校园跑腿、代替服务、上门维修和其他帮助。 使用该源码需要自备服务器和备案过的域名&#xff0c;推荐使用2核4G服务器。最…

【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 海洋与大气科学 软件 选择此软件是因为习惯了&#xff0c;matlab能看得到的界面。 新建文本 导入相关库 import netCDF4,numpy netCDF4:该包作用&#xff1a;读、写netCDF files. numpy:该包作用&#xff1a;…

【JavaScript】读取本地json文件并绘制表格

本文为避免跨域问题&#xff0c;使用了改造过的本地json文件的方法实现读取json数据并绘制表格。 如果发起http请求获取本地 json文件中数据&#xff0c;需要架设本地服务器&#xff0c;本文不做阐述。 概述 1、json在本地&#xff0c;并不需要从服务器下载。 2、采用jquery…

八、垃圾收集高级

JVM由浅入深系列一、关于Java性能的误解二、Java性能概述三、了解JVM概述四、探索JVM架构五、垃圾收集基础六、HotSpot中的垃圾收集七、垃圾收集中级八、垃圾收集高级👋垃圾收集高级 ⚽️1. CMS CMS 收集器是专为老年代空间设计的一个延迟极低的收集器,它通常会与一个稍微…

【每日一题】1498. 满足条件的子序列数目

1498. 满足条件的子序列数目 - 力扣&#xff08;LeetCode&#xff09; 给你一个整数数组 nums 和一个整数 target 。 请你统计并返回 nums 中能满足其最小元素与最大元素的 和 小于或等于 target 的 非空 子序列的数目。 由于答案可能很大&#xff0c;请将结果对 109 7 取余后…

buuctf-[WUSTCTF2020]CV Maker

打开环境 随便登录注册一下 进入到了profile.php 其他没有什么页面&#xff0c;只能更换头像上传文件&#xff0c;所以猜测是文件上传漏洞 上传一句话木马看看 <?php eval($_POST[a]);?>回显 搜索一下 添加文件头GIF89a。上传php文件 查看页面源代码&#xff0c;看…

设计模式7、桥接模式 Bridge

解释说明&#xff1a;将抽象部分与它的实现部分解耦&#xff0c;使得两者都能够独立变化 桥接模式将两个独立变化的维度设计成两个独立的继承等级结构&#xff08;而不会将两者耦合在一起形成多层继承结构&#xff09;&#xff0c;在抽象层将二者建立起一个抽象关联&#xff0c…

安卓 kuaishou 设备did和egid 学习分析

did和egid注册 接口 https://gdfp.ksapisrv.com/rest/infra/gdfp/report/kuaishou/android did 是本地生成的16进制 或者 获取的 android_id public static final Random f16237a new Random(System.currentTimeMillis()); public static long m19668a() { return f1623…

c#设计模式-结构型模式 之装饰者模式

&#x1f680;介绍 在装饰者模式中&#xff0c;装饰者类通常对原始类的功能进行增强或减弱。这种模式是在不必改变原始类的情况下&#xff0c;动态地扩展一个对象的功能。这种类型的设计模式属于结构型模式&#xff0c;因为这种模式涉及到两个类型之间的关系&#xff0c;这两个…

优化用户体验:解决element中el-tabs组件切换闪屏问题

前言 在现代 web 应用中&#xff0c;用户体验是至关重要的。然而&#xff0c;在使用 element 中的 el-tabs 组件时&#xff0c;相信有不少开发者都会遇到切换时的闪屏问题。这个问题可能导致用户在切换标签页时感到不适&#xff0c;降低了用户体验&#xff0c;本文将探讨这个问…

LeetCode面向运气之Javascript—第58题-最后一个单词的长度-99.83%

LeetCode第58题-最后一个单词的长度 题目要求 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 举例 输入&#xff1a;s “Hello World” 输出&#xff1a;5 输入&#xff1a;s " fly me to …

力扣 -- 97. 交错字符串

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:bool isInterleave(string s1, string s2, string s3) {int ms1.size();int ns2.size();//先判断s1的长度s2的长度是否等于s3的长度&#xff0c;如果不等&#xff0c;则s1和s2不可能拼接成s3if(mn!s3.size…

C++11(列表初始化,声明,范围for)

目录 一、列表初始化 1、一般的列表初始化 2、容器的列表初始化 二、声明 1、 auto 2、decltype 3、nullptr 三、 范围for 一、列表初始化 1、一般的列表初始化 在C98中&#xff0c;标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。 int main() {…

CAS( 比较并交换-乐观锁机制-锁自旋 )

1 概念及特性 CAS&#xff08;Compare And Swap/Set&#xff09;比较并交换&#xff0c;CAS 算法的过程是这样&#xff1a;它包含 3 个参数 CAS(V,E,N)。V 表示要更新的变量(内存值)&#xff0c;E 表示预期值(旧的)&#xff0c;N 表示新值。当且仅当 V 值等于 E 值时&#xff0…

二叉树题目:平衡二叉树

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;平衡二叉树 出处&#xff1a;110. 平衡二叉树 难度 4 级 题目描述 要求 给定一个二叉树&#xff0c;判断它是否…

生产者、消费者问题

线程六个状态&#xff1a; public enum State {/*** 新生*/NEW,/*** 运行*/RUNNABLE,/***阻塞*/BLOCKED,/*** 等待*/WAITING,/*** 超时等待*/TIMED_WAITING,/**死亡**/TERMINATED;} synchronized和lock的区别 1、synchronized是关键字&#xff0c;lock是类 2、synchronized全自…

蓝桥等考Python组别九级008

第一部分&#xff1a;选择题 1、Python L9 &#xff08;15分&#xff09; 运行下面程序&#xff0c;可以输出几行“*”&#xff1f;&#xff08; &#xff09; for i in range(8): for j in range(9): print(*, end ) print() 78910 正确答案&#xff1a;B 2、Python…

MySQL数据查询性能如何分析--Explain介绍说明

1、Explain是什么 Explain是MySQL执行查看执行计划命令的指令&#xff0c;使用EXPLAIN关键字可以模拟优化器执行SQL查询语句&#xff0c;从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。 2、Explain官网介绍 http://dev.mysql.com/doc/refma…

MD5 绕过第三式:ffifdyop

文章目录 参考环境推荐阅读雾现两个 PHP 文件表结构分析 雾散ASCII 编码二进制数据到 ASCII 文本的转化绕过原理ffifdyop绕过 ffifdyop 的批量化生产批量化生产注意事项细节一字之差运算符优先级 实际需要遵守的规则 生产机器 参考 项目描述搜索引擎Bing、GoogleAI 大模型文心…

中国逐年干燥度指数数据集

简介&#xff1a; 中国逐年干燥度指数&#xff0c;空间分辨率为1km&#xff0c;时间为1901-2022&#xff0c;为比值&#xff0c;没有单位。该数据集是基于中国1km逐月潜在蒸散发&#xff08;PET&#xff09;和降水量&#xff08;PRE&#xff09;采用比值法计算式得到&#xff…