pytorch3D Windows下安装经验总结

news2024/11/27 9:53:50

一、说明及准备工作

最近在安装pytorch3D的时候遇到了很多问题,查了很多博客,但发现讲的都不太全,所以特将自己的及收集到的安装过程经验总结如下。我是在Anaconda中虚拟环境下安装的。

1.1准备工作

官方安装教程如下:https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md,完全按照这个教程安装可能会遇到很多问题,因此需要补充一些细节。安装这个的前提是已经安装了pytorch。

1.2相关包的安装

总共需要安装的包有:

  • fvcore
  • iopath
  • cub
  • scikit-image
  • black
  • usort
  • flake8
  • matplotlib
  • tdqm
  • jupyter
  • imageio
  • plotly
  • opencv-python

这里面除了cub需要单独安装(后面会单独讲),其他都可以用conda直接安装。推荐用conda安装,因为我没用其他方法试过,所以不确定不用conda会出现哪些问题。具体安装过程如下:

  • 首先打开cmd命令窗口,然后创建并激活conda虚拟环境
conda create -n pytorch-gpu python=3.9
conda activate pytorch3d
  • 然后依次执行下面的代码(一行一行来,复制一行粘贴然后回车等待安装完成再继续下一行,直到全部安装完成)
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
pip install black usort flake8 flake8-bugbear flake8-comprehensions



1.3 cub安装配置

cub与cuda toolkit对应关系如下(图片截自https://github.com/NVIDIA/cub):
截自https://github.com/NVIDIA/cub
根据自己的cuda tookit版本选择对应的cub realase版本下载,下载地址为https://github.com/NVIDIA/cub/releases

  • 如下图所示,点击下载解压到自己想安装的位置
    在这里插入图片描述
  • 解压后,添加设置环境变量,变量名CUB_HOME,变量值即为刚才解压的cub的文件路径

在这里插入图片描述

  • 设置完即安装完成。


1.4 MinGW安装

我是按照一些博客教程的步骤安装了这个,但我也不确定是不是一定需要安装,以防万一大家还是安装一下比较好。

  • 具体安装过程可以参考这篇博客http://c.biancheng.net/view/8077.html


二、pytorch3D安装

2.1首先下载解压pytorch3D到想要安装的位置

下载地址:https://github.com/facebookresearch/pytorch3d/releases注意版本要与pytorch对应,每个版本的Pytorch3d下有注明其适用的pytorch版本。

  • 点击下载,然后解压到相应位置即可,如果是cuda虚拟环境下运行,建议下载到虚拟环境的Lib\site-packages目录下,比如我的虚拟环境是torch-gpu,我就把pytorch3D放到D:\software\anaconda3\envs\torch-gpu\Lib\site-packages里面,然后将解压的文件夹重命名为pytorch3D
    在这里插入图片描述
    在这里插入图片描述

2.2 更改相关文件

打开pytorch3D文件夹,找到setup.py文件,打开,将extra_compile_args = {“cxx”: [“-std=c++14”]} 修改为: extra_compile_args = {“cxx”: []};
在这里插入图片描述

2.3 安装pytorch3D

  • 安装VS2019,以管理员身份打开下图所示的x64 Native Tools Command Prompt for VS 2019终端,然后cd到pytorch3d解压后的目录路径里,然后激活虚拟环境。最好用2019,VS2022可能会出一些问题。

在这里插入图片描述

在这里插入图片描述

  • 在窗口依次输入执行下面的命令:
set DISTUTILS_USE_SDK=1
set PYTORCH3D_NO_NINJA=1
  • 最后执行安装pytorch3D的代码
python setup.py install

如果一切顺利,那么等待执行完成,pytorch就安装成功了。
也有可能会遇到一些错误,下面是一些常见错误的总结和解决方法。


三、安装时可能遇到的问题

3.1 遇到如下报错解决方法

C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7/include\cub/device/dispatch/dispatch_segmented_sort.cuh(338): error: invalid combination of type specifiers
C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7/include\cub/device/dispatch/dispatch_segmented_sort.cuh(338): error: expected an identifier
C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7/include\cub/device/dispatch/dispatch_segmented_sort.cuh(379): error: expected a member name

3 errors detected in the compilation of "D:/research/code/pytorch3d/pytorch3d/csrc/pulsar/cuda/renderer.backward.gpu.cu".
renderer.backward.gpu.cu

解决方法:

  • 该错误原因可能是cub版本不正确,重新下载其他版本的然后配置好就行,我遇到的就是这个问题,刚开始下载的是1.10的后来重新下载了1.17的版本把1.10的替换掉就解决了。

3.2遇到如下报错及解决方法

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include\thrust\system\cuda\config.h(78): fatal error C1189: 
#error: The version of CUB in your include path is not compatible with this release of Thrust. 
CUB is now included in the CUDA Toolkit, so you no longer need to use your own checkout of CUB. 
Define THRUST_IGNORE_CUB_VERSION_CHECK to ignore this. ball_query.cu

解决方法:

  • 编辑位于 "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include\thrust\system\cuda\config.h"的config.h文件。Ctrl+F搜索 #ifndef THRUST_IGNORE_CUB_VERSION_CHECK 然后在它前面加上一行 #define THRUST_IGNORE_CUB_VERSION_CHECK 代码.该解决方法参考了https://github.com/facebookresearch/pytorch3d/issues/1299

3.3遇到如下报错及解决方法

subprocess.CalledProcessError: Command ‘[‘ninja‘,-v‘]‘ returned non-zero exit status 1.
...
...
File "D:\Programs\python3.6.8\lib\site-packages\torch\utils\cpp_extension.py", line 1529, in _run_ninja_build
raise RuntimeError(message)
RuntimeError: Error compiling objects for extension

解决方法:

  • 编辑torch\utils文件夹下的cpp_extension.py文件,conda虚拟环境下torch一般位于虚拟环境\Lib\site-packages中,比如我的cpp_extension.py文件位于D:\software\anaconda3\envs\torch-gpu\Lib\site-packages\torch\utils。Ctrl+F搜索 ‘ninja’ 然后将[‘ninja’,‘-v’]改成[‘ninja’,‘–version’]即可

到这里基本上应该能解决大部分问题,如果还有其他问题,就有可能是前面的步骤没做好,或者是我也没遇到过的问题。

最后,祝大家好运 (。◕ˇ∀ˇ◕)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1052899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS基础介绍2

CSS使用三种方式 方式1&#xff1a;在标签的style属性上设置CSS样式&#xff08;行内样式&#xff09; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>在标签的style属性上设置CSS样式</title>…

第七章 用户和组管理

7.1 Linux中的用户和组的分类 用户类别 超级用户&#xff08;0&#xff09; root 系统用户(1-999) 一般用户(1000-60000) 组类别 管理组 root 基本组&#xff08;默认组/主组&#xff09; 附加组&#xff08;额外组&#xff09; 7.2 用户管理 7.2.1 添加新用户 语法 useradd 【…

通过java向jar写入新文件

文章目录 原始需求分析实施步骤引入依赖核心编码运行效果 原始需求 有网友提问&#xff1a; 我想在程序中动态地向同一个jar包中添加文件&#xff0c;比如&#xff0c;我的可执行jar包是test.jar,我要在它运行时生成一些xml文件并将这些文件添加到test.jar中,请问如何实现&…

路由模式和打包优化

1. 路由模式-将路由改成history模式 hash模式带#&#xff0c;#后面的地址变化不会引起页面的刷新history没有#&#xff0c;地址变化会引起页面刷新&#xff0c;更符合页面地址的规范&#xff08;开发环境不刷新-webpack配置&#xff09;将路由模式修改成history模式-代码位置(s…

钉钉h5微应用调试 整理

钉钉 H5微应用整理 1.申请H5微应用2.登录3.调试 1.申请H5微应用 https://open.dingtalk.com/ 登录钉钉开发平台。 应用appId、CorpId都可以在网站上自行查找 应用首页地址&#xff08;指手机端显示地址&#xff09; pc端首页地址&#xff08;指电脑端显示地址&#xff09; 我这…

Spring Cloud Gateway学习(1)—— Gateway 的基本概念 引入依赖需要注意的事项 +解决方案 全局网关的入门使用案例

前言 Spring Cloud Gateway 基于 Spring Boot 2&#xff0c;是 Spring Cloud 的全新项目。Gateway 旨在提供一种简单而有效的途径来转发请求&#xff0c;并为它们提供横切关注点。 gateway相当于所有服务的门户&#xff0c;将客户端请求与服务端应用相分离&#xff0c;客户端…

力扣 -- 10. 正则表达式匹配

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:bool isMatch(string s, string p) {int ms.size();int np.size();//处理后续映射关系s s;//处理后续映射关系p p;vector<vector<bool>> dp(m1,vector<bool>(n1));//初始化dp[0][0]true…

走进Spring的世界 —— Spring底层核心原理解析(一)

文章目录 前言一、Spring中是如何创建一个对象二、Bean的创建过程三、推断构造方法四、AOP大致流程五、Spring事务 前言 ClassPathXmlApplicationContext context new ClassPathXmlApplicationContext("config.xml"); UserService userService (UserService) cont…

pytorch第一天(tensor数据和csv数据的预处理)lm老师版

tensor数据&#xff1a; import torch import numpyx torch.arange(12) print(x) print(x.shape) print(x.numel())X x.reshape(3, 4) print(X)zeros torch.zeros((2, 3, 4)) print(zeros)ones torch.ones((2,3,4)) print(ones)randon torch.randn(3,4) print(randon)a …

koa基础应用

不要把koa想得太复杂&#xff0c;他就是一个Node框架而已。 在本地应用安装好Node和koa后&#xff0c;先实现一下简单的服务app.js&#xff0c;代码如下&#xff1a; const Koa require(koa) const app new Koa(); app.use(async (context) > {context.body hello Koa …

CCF CSP认证 历年题目自练Day17

CCF CSP认证 历年题目自练Day17 题目一 试题编号&#xff1a; 201803-1 试题名称&#xff1a; 跳一跳 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 256.0MB 问题描述&#xff1a; 问题描述   近来&#xff0c;跳一跳这款小游戏风靡全国&#xff0c;受到不少玩家的喜爱…

【Linux】——基操指令(二)

个人主页 代码仓库 C语言专栏 初阶数据结构专栏 Linux专栏 LeetCode刷题 算法专栏 目录 前言 man指令 cp 指令 mv指令 echo指令 cat指令 more指令 less指令 head和tail指令 head指令 tail指令 前言 上篇文章给大家讲解了Linux环境下的一点基操指令&#xf…

Sentinel学习(1)——CAP理论,微服务中的雪崩问题,和Hystix的解决方案 Sentinel的相关概念 + 下载运行

前言 Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 本篇博客介绍CAP理论&#xff0c;微…

云原生开发:从容器到微服务的全栈指南

文章目录 什么是云原生开发&#xff1f;1. 容器化2. 微服务架构 云原生开发的优势1. 可伸缩性2. 高可用性3. 灵活性4. 快速交付 云原生开发的1. 学习曲线2. 复杂性3. 运维挑战 云原生开发的最佳实践1. 自动化部署2. 监控和日志3. 安全性4. 弹性设计5. 文档和培训 未来展望结论 …

聊聊并发编程——并发容器和阻塞队列

目录 一.ConcurrentHashMap 1.为什么要使用ConcurrentHashMap&#xff1f; 2.ConcurrentHashMap的类图 3.ConcurrentHashMap的结构图 二.阻塞队列 Java中的7个阻塞队列 ArrayBlockingQueue&#xff1a;一个由数组结构组成的有界阻塞队列。 LinkedBlockingQueue&#xf…

给奶牛做直播之三

​一、前言 上一篇给牛奶做直播之二 主要讲用RTMP搭建点播服务器&#xff0c;整了半天直播还没上场&#xff0c;今天不讲太多理论的玩意&#xff0c;奶牛今天放假了也不出场&#xff0c;就由本人亲自上场来个直播首秀&#xff0c;见下图&#xff0c;如果有兴趣的话&#xff0…

【算法|贪心算法系列No.2】leetcode2208. 将数组和减半的最少操作次数

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

数据结构与算法_二叉搜索树

二叉搜索树可以说是二叉树的升级版&#xff0c;在数据的查找上&#xff0c;它优于普通二叉树。要让普通二叉树成为二叉搜索树&#xff0c;就要对于树中每个节点X&#xff0c;它左子树中所有节点元素的值小于X中的值&#xff0c;它右子树中所有节点元素的值大于X中的值。 请看下…

ElasticSearch - 基于 JavaRestClient 查询文档(match、精确、复合查询,以及排序、分页、高亮)

目录 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.1、查询基本框架 DSL 请求的对应格式 响应的解析 1.1.2、全文检索查询 1.1.3、精确查询 1.1.4、复合查询 1.1.5、排序和分页 1.1.6、高亮 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.…