uboot启动流程涉及reset汇编函数

news2024/12/25 12:23:16

一.   uboot启动流程中函数

之前了解了uboot链接脚本文件 u-boot.lds。

从 u-boot.lds 中我们已经知道了入口点是 arch/arm/lib/vectors.S 文件中的 _start

本文了解 一下,uboot启动过程中涉及的 reset 函数。本文继上一篇文章学习,地址如下:

uboot启动流程-uboot链接脚本u-boot.lds_凌肖战的博客-CSDN博客

二.   reset 函数源码详解

u-boot.lds 中,我们已经知道了入口点是 arch/arm/lib/vectors.S 文件中的 _start,代码如下: 

38 /*
39 *************************************************************
40 *
41 * Exception vectors as described in ARM reference manuals
42 *
43 * Uses indirect branch to allow reaching handlers anywhere in 
44 * memory.
45 **************************************************************
46 */
47
48 _start:
49
50 #ifdef CONFIG_SYS_DV_NOR_BOOT_CFG
51 .word CONFIG_SYS_DV_NOR_BOOT_CFG
52 #endif
53
54 b reset
55 ldr pc, _undefined_instruction
56 ldr pc, _software_interrupt
57 ldr pc, _prefetch_abort
58 ldr pc, _data_abort
59 ldr pc, _not_used
60 ldr pc, _irq
61 ldr pc, _fiq

48 _start 开始的是中断向量表,其中 54~61 行就是中断向量表,和我们裸机例程里面一样。

1.   start.S 文件中的 reset 函数

第 54 行跳转到 reset 函数里面, reset 函数在 arch/arm/cpu/armv7/start.S 里面,代码如下:
32 .globl reset
33 .globl save_boot_params_ret
34
35 reset:
36 /* Allow the board to save important registers */
37 b save_boot_params

start.S 文件的第 35 行就是 reset 函数。

37 行从 reset 函数跳转到了 save_boot_params 函数,而 save_boot_params 函数同样定义start.S 里面,定义如下:

100      ENTRY ( save_boot_params )
101       b save_boot_params_ret @ back to my caller

2.   start.S文件中的save_boot_params_ret 函数

save_boot_params 函数也是只有一句跳转语句,跳转到 save_boot_params_ret 函数,
save_boot_params_ret 函数代码如下:
38 save_boot_params_ret:
39 /*
40 * disable interrupts (FIQ and IRQ), also set the cpu to SVC32 
41 * mode, except if in HYP mode already
42 */
43 mrs r0, cpsr
44 and r1, r0, #0x1f @ mask mode bits
45 teq r1, #0x1a @ test for HYP mode
46 bicne r0, r0, #0x1f @ clear all mode bits
47 orrne r0, r0, #0x13 @ set SVC mode
48 orr r0, r0, #0xc0 @ disable FIQ and IRQ
49 msr cpsr,r0

save_boot_params_ret 函数中,第43行~49行,将处理器设置为SVC模式,并且关闭FIQ和IRQ。

继续分析 start.S 下面的代码:

56 #if !(defined(CONFIG_OMAP44XX) && defined(CONFIG_SPL_BUILD))
57 /* Set V=0 in CP15 SCTLR register - for VBAR to point to vector */
58 mrc p15, 0, r0, c1, c0, 0 @ Read CP15 SCTLR Register
59 bic r0, #CR_V @ V = 0
60 mcr p15, 0, r0, c1, c0, 0 @ Write CP15 SCTLR Register
61
62 /* Set vector address in CP15 VBAR register */
63 ldr r0, =_start
64 mcr p15, 0, r0, c12, c0, 0 @Set VBAR
65 #endif

56 行,如果没有定义 CONFIG_OMAP44XX CONFIG_SPL_BUILD 的话条件成立,此处条件成立。
58 行读取 CP15 c1 寄存器的值到 r0 寄存器中,根据 17.1.4 小节可知,这里是读取 SCTLR 寄存器的值。

59 行,CR_V arch/arm/include/asm/system.h 中有如下所示定义:

#define CR_V (1 << 13) /* Vectors relocated to 0xffff0000 */

因此,第 59 行的目的就是清除 SCTLR 寄存器中的 bit13 SCTLR 寄存器结构 如下:

可以看出, bit13 V 位,此位是向量表控制位,当为 0 的时候向量表基地址为 0X00000000 ,软件可以重定位向量表。为 1 的时候向量表基地址为 0XFFFF0000 ,软件不能 重定位向量表。这里将 V 清零,目的就是为了接下来的向量表重定位。

60 行将 r0 寄存器的值重写写入到寄存器 SCTLR 中。

63 行设置 r0 寄存器的值为 _start _start 就是整个 uboot 的入口地址,其值为 0X87800000 相当于 uboot 的起始地址,因此 0x87800000 也是向量表的起始地址。
64 行将 r0 寄存器的值 ( 向量表值 ) 写入到 CP15 c12 寄存器中,也就是 VBAR 寄存器。
因此,第 58~64 行就是设置向量表重定位的。

继续分析 start.S 下面的代码:

67 /* the mask ROM code should have PLL and others stable */
68 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
69 bl cpu_init_cp15
70 bl cpu_init_crit
71 #endif
72
73 bl _main
68 行如果没有定义 CONFIG_SKIP_LOWLEVEL_INIT 的话条件成立。我们没有定义
CONFIG_SKIP_LOWLEVEL_INIT ,因此条件成立,执行下面的语句。
68 行~ 73行的内容比较简单,就是分别调用函数 cpu_init_cp15 cpu_init_crit _main
函数 cpu_init_cp15 用来设置 CP15 相关的内容,比如关闭 MMU 啥的,此函数同样在 start.S
文件中定义的。可以自行查看, 函数 cpu_init_cp15 都是一些和 CP15 有关的内容,我们不用关心,有兴趣的可以详细的看 一下。

函数 cpu_init_crit 也在是定义在 start.S 文件中,函数内容如下:

268 ENTRY(cpu_init_crit)
269 /*
270 * Jump to board specific initialization...
271 * The Mask ROM will have already initialized
272 * basic memory. Go here to bump up clock rate and handle
273 * wake up conditions.
274 */
275 b lowlevel_init @ go setup pll,mux,memory
276 ENDPROC(cpu_init_crit)
可以看出函数 cpu_init_crit 内部仅仅是调用了函数 lowlevel_init ,接下来就是详细的分析一
lowlevel_init _main 这两个函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1051137.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

外包干了2个月,技术有明显退步...

先说一下自己的情况&#xff0c;本科生&#xff0c;18年通过校招进入广州某软件公司&#xff0c;干了接近3年的功能测试&#xff0c;今年国庆&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!可我已经在一个企业干了3年的功能测试&…

ELK 处理 Spring Boot 日志

ELK 处理 Spring Boot 日志&#xff0c;妙啊&#xff01; 来源&#xff1a;ibm.com/developerworks/cn/java /build-elk-and-use-it-for-springboot -and-nginx/index.html ELK 简介 Logstash Elasticsearch Kibana ELK 实现方案 ELK 平台搭建 安装 Logstash 安装 Elas…

ROS系统读取USB相机图像数据

ROS系统读取USB相机图像数据 前言usb_cam 功能包下载与编译摄像头选择连接摄像头可配置参数 前言 usb_cam功能包简介 为了丰富机器人与外界的交互方式&#xff0c;已经增加了与机器人的语音交互方式&#xff0c;不仅使机器人能够说话发声&#xff0c;还能听懂我们说的话&#…

友思特案例|友思特 Ensenso 3D相机:汽车工业自动化的革命性力量

01 内容摘要 在竞争激烈的汽车行业&#xff0c;自动化生产至关重要。友思特 Ensenso 3D相机为汽车制造商提供了可靠的工具和技术支持&#xff0c;助力多个关键环节。它在汽车座位泡棉切割中提高精确度&#xff0c;降低浪费&#xff0c;提高生产效率&#xff1b;在汽车压铸零部…

第七章 查找 九、B+树

目录 一、定义 二、B树需要满足的条件 三、重要考点 一、定义 1、B树是一种常用的数据结构&#xff0c;用于实现关系型数据库中的索引。 2、其特点是可以在磁盘等外存储器上高效地存储大量数据&#xff0c;并支持快速的查询、插入、删除等操作。 3、B树的结构类似于二叉搜…

ASUS华硕ZenBook 13灵耀U 2代U3300F笔记本UX333FN/FA原装出厂Win10系统工厂安装模式

系统自带所有驱动、出厂主题壁纸、系统属性华硕专属LOGO标志、Office办公软件、MyASUS华硕电脑管家等预装程序 下载链接&#xff1a;https://pan.baidu.com/s/1dK0vMZMECPlT63Rb6-jeFg?pwdbym5 所需要工具&#xff1a;16G或以上的U盘(非必需) 文件格式&#xff1a;HDI,SWP,O…

RocketMQ 消息丢失问题排查记录

现象 在 spring boot 项目中集成 RocketMQ 时发现消费者接收消息丢失&#xff0c;比如生产者发送了 10 条消息&#xff0c;但是消费者只能接收到 4 条。 在项目中使用的 RocketMQ 版本是 4.9.2&#xff0c;rocketmq-spring-boot-starter 版本是 2.2.2&#xff0c;消息处理逻辑…

聊聊并发编程——Condition

目录 一.synchronized wait/notify/notifyAll 线程通信 二.Lock Condition 实现线程通信 三.Condition实现通信分析 四.JUC工具类的示例 一.synchronized wait/notify/notifyAll 线程通信 关于线程间的通信&#xff0c;简单举例下&#xff1a; 1.创建ThreadA传入共享…

获取dom元素

<button type"button" click"greet">count is {{ count }}</button>function greet(event) {if (event) {console.log(event)console.log(event.target)console.log(event.target.tagName)} } 很明显没传参数&#xff0c;但是获取到了相应的值…

JIT介绍

JIT全称&#xff1a;Just in time。中文译为&#xff1a;即时的、实时的。 JVM中的这项技术名为&#xff1a;实时编译技术&#xff0c;也叫即时编译技术。就是在java程序运行的过程中&#xff0c;将字节码编译为机器码运行在本地&#xff0c;而不是通过JVM解释运行&#xff08;…

微信公众号网页授权登录获取用户基本信息

概述 微信公众号网页授权登录后微信获取用户基本信息&#xff0c;部署即可运行完整demo 详细 一、前言 &#xff08;1&#xff09;适合人群 1&#xff0c;JAVA服务端开发人员 2&#xff0c;初级人员开发人员 3&#xff0c;了解spring springboot maven 3&#xff0c;了…

结构型设计模式——桥接模式

摘要 桥接模式(Bridge pattern): 使用桥接模式通过将实现和抽象放在两个不同的类层次中而使它们可以独立改变。 一、桥接模式的意图 将抽象与实现分离开来&#xff0c;使它们可以独立变化。 二、桥接模式的类图 Abstraction: 定义抽象类的接口Implementor: 定义实现类接口 …

蓝桥杯 题库 简单 每日十题 day12

01 列名 问题描述 在Excel中&#xff0c;列的名称使用英文字母的组合。前26列用一个字母&#xff0c;依 次为A到Z&#xff0c;接下来2626列使用两个字母的组合&#xff0c;依次为AA到zz. 请问第2022列的名称是什么&#xff1f; 答案提交 这是一道结果填空的题&#xff0c;你只…

缓存一致性(cache coherency)解决方案:MESI 协议状态转换详解

MESI 协议 一&#xff0c;MESI状态释义二&#xff0c;MESI状态转换1 Invalid after Reset2, Invalid > Exclusive3, Exclusive > Modified4 Modified > Shared, Invalid > Shared5 Shared > Invalid, Shared > Modified 三&#xff0c;状态转换场景总结Inval…

最小生成树 | 市政道路拓宽预算的优化 (Minimum Spanning Tree)

任务描述&#xff1a; 市政投资拓宽市区道路&#xff0c;本着执政为民&#xff0c;节省纳税人钱的目的&#xff0c;论证是否有必要对每一条路都施工拓宽&#xff1f; 这是一个连问带答的好问题。项目制学习可以上下半场&#xff0c;上半场头脑风暴节省投资的所有可行的思路&a…

因果引擎(Causal Engine)是基于因果推理的人工智能系统

因果引擎(Causal Engine)是一种基于因果推理的人工智能系统。 其关键思想是通过学习事件之间的因果关系,对环境进行模型化和推理,从而指导AI系统采取行动。 因果引擎的主要特征包括: 建立因果图(Causal Graph):通过统计方法学习不同事件之间的因果关系,构建表示这些因果关系的…

基于微信小程序的游戏账号交易买卖平台设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…

通过 Azure 日志分析加强云安全

Microsoft Azure 云服务在安全日志存储、访问、可伸缩性、降低成本和易于部署方面提供了巨大的优势&#xff0c;因此在企业中很受欢迎。 Microsoft Azure 日志记录工具&#xff08;如 Log360&#xff09;可帮助管理 Azure 云基础结构中所有设备和应用程序&#xff08;如虚拟机…

Linux:nginx---web文件服务器

我这里使用的是centos7系统 nginx源码包安装 Linux&#xff1a;nginx基础搭建&#xff08;源码包&#xff09;_鲍海超-GNUBHCkalitarro的博客-CSDN博客https://blog.csdn.net/w14768855/article/details/131445878?ops_request_misc%257B%2522request%255Fid%2522%253A%25221…

Spring | 基于SpringBoot的多数据源实战 - 使用seata实现多数据源的全局事务管理

Spring | 基于SpringBoot的多数据源实战 - 使用seata实现多数据源的全局事务管理 引言1.1 多数据源的必要性1.2 多数据源的应用场景 实战演示2.1 创建实体类2.2 配置数据源2.3 实现数据源配置类2.4 配置Repository类2.5 运行与验证 事务管理与数据一致性3.1 事务管理3.2 使用Se…