R语言进行孟德尔随机化+meta分析(2)----基于R和stata

news2024/11/24 17:00:10

目前不少文章用到了孟德尔随机化+meta分析,在上一章咱们简单介绍了一下meta分析的基础知识。咱们今天来介绍一篇11分文章,由文章看看孟德尔随机化+meta分析如何进行,文章的题目是:Appraising the causal role of smoking in multiple diseases: A systematic review and meta-analysis of Mendelian randomization studies(评估吸烟在多种疾病中的因果作用:孟德尔随机研究的系统回顾和荟萃分析)
在这里插入图片描述
吸烟其实没什么创意,唯一的新意就是加入了孟德尔随机化和meta分析。我们可以看到文章的类型就是meta分析,说明孟德尔随机化+meta分析的本质就是个meta分析。作者先是介绍说吸烟与多种疾病之间的因果关系仍然不明确,目的是通过总结孟德尔随机化 (MR) 研究的证据来评估吸烟在多种疾病中的因果作用。
咱们看下它的方法学是怎么做的:
在这里插入图片描述

完全是meta分析的套路,分两步提取数据,
第一步:是搜索各大数据库“孟德尔随机化”与“吸烟”的相关文章,把文章中吸烟和疾病的关系的数据提取出来。纳入标准:原始全文文章,介绍了吸烟或终身吸烟的遗传易感性与一种或多种循环、消化、神经和肌肉骨骼系统疾病、内分泌、代谢和眼部疾病或肿瘤风险的关联结果。一共纳入了385篇文章。排除标准:基于相同或重叠研究样本的重复出版物,以及仅使用单一或少数(<10)尼古丁依赖或吸烟行为或数量的工具变量的研究。作者这里提取了年份,样本量,关系的比值比OR。经过排除后适合分析的有29篇。
第二步:有一部分数据就是芬兰基因研究(FinnGen)作者通过检索没有检索到资料,他就自己来做,他使用了 R6版本中的数据进行孟德尔随机化分析,其中包括 260 405 名芬兰人,但剔除了性别不明确、非芬兰血统、基因型缺失率超过 5%、或杂合度过高(±4 个标准差)的数据。此外,作者还利用 GWAS meta 分析中公开的汇总统计数据,对骨关节炎、痛风和原发性开角型青光眼进行了从头开始的 MR 分析。第二部分提取到的数据应该是27篇,因为最后供56篇文章。
下面是他的流程图:
流程图:
在这里插入图片描述
通过流程图咱们可以知道最后作者得到14篇循环疾病的文章,消化疾病8篇,神经系统疾病5篇,肌肉骨骼系统4篇,2篇内分泌,3篇眼科疾病,21篇关于肿瘤的文章。整个过程处理起来还是挺花时间的,毕竟要一篇篇的读,提取数据。
接下来咱们看看作者提供的数据,附表1是作者自己做的孟德尔随机化的结果,它的结果有两个,一个是刚开始吸烟,还有一个是终生吸烟。作者也是根据这两个结果进行meta分析的。
在这里插入图片描述

在这里插入图片描述
接下来就是作者的两个主表了,表2是开始吸烟的人的疾病分析,表3是终生吸烟的人的疾病分析,作者就是根据这两个表来做meta分析的,下面我把数据提取出来跑一下。
在这里插入图片描述
在这里插入图片描述
下面我把数据提取出来跑一下,数据量挺大的我就提取刚开始吸烟的患者循环疾病这部分举个例子,其他疾病的都是一样的。这里我们要注意一下,循环系统是有很多疾病的,就拿心房颤动这个疾病来说,作者的数据很多很大,他是把GWAS meta-analysis、FinnGen这2个数据库的结果进行相加,再来做meta分析,如果你的数据没有这么大,你把每个数据库先分别做,然后再汇总也是可以的。

bc<-read.csv("E:/r/test/smokemeta.csv",sep=',',header=TRUE)
names(bc)

数据提取出来后下图这个样子,这个数据可以按作者的方法进行提取,如果你想偷懒一点,使用我提取好的数据,公众号回复:代码,可以得到。
在这里插入图片描述
既往咱们已经介绍了《R语言forestploter包优雅的绘制孟德尔随机化研究森林图》,需要的可以自己看一下。今天咱们来介绍一下forestplot包绘制这个森林图,这个包相对简单一点,容易上手。

library(forestplot)

咱们先生成个可信区间

bc$`OR (95% CI)` <- sprintf("%.2f (%.2f to %.2f)", bc$OR, bc$LB, bc$UB)

在这里插入图片描述
生成可信区间后我们需要生成一个绘图区间,选择你需要的变量就可以了,我这里选1,2,6

dt1<-as.matrix(bc[,c(1,2,6)])

在这里插入图片描述
这里注意一下,dt这个数据是矩阵没有列名,我们还要生成一个列名

dt1 <- rbind(c("outcome","Cases","OR (95% CI)"),dt1)

在这里插入图片描述
这样的数据就可以绘图了

forestplot(labeltext=dt1,graph.pos="right", 
           mean=c(NA,bc$OR),
           lower=c(NA,bc$LB),
           upper=c(NA,bc$UB),
           graphwidth = unit(60,"mm"),#设置图片位置和宽度
           boxsize =0.2,line.margin = unit(5,"mm"),#对散点和线条进行设置
           lineheight = unit(5,"mm"),#设置图形行距
           col=fpColors(box = "grey0",lines = "grey0",summary = "grey0"),
           colgap = unit(1,"mm"),#图形列间距
           zero = 1,#参照值
           xticks = c(0,1,2))#X轴的定义标签

在这里插入图片描述
咱们可以看到和作者做的几乎一模一样
在这里插入图片描述
为什么我说几乎一模一样,因为还是有点不一样的,作者没有11278肺栓塞这个数据,但是它的原数据是有的,估计绘图时忘记加进去了
在这里插入图片描述
绘图出来了,还有一个东西没有解决。有些论文是有报meta分析的I(异质性)和P值的,这个怎么求出来呢?
在这里插入图片描述
在这里插入图片描述
这个两个值作者文章推荐使用stata来计算,stata做meta分析简单了许多, 使用metan函数就行

metan or lb ub

在这里插入图片描述
在这里插入图片描述
图片还可以修改,我这里不弄了。最终算得I为80.6%,P为0.00,可能和作者有点不同,因为他少加了一个研究。最后作者还做了敏感性分析,是通过孟德尔随机化来做的,不是所有的文章都做,下面这篇文章就没做敏感性分析。
在这里插入图片描述
我这里就不弄了,有兴趣看我既往的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1050954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大数据Doris(二):Doris原理篇

文章目录 Doris原理篇 一、Doris 特点 1、支持标准SQL接口 2、列式存储引擎

百度统计配置详细图文教程包含siteId、百度统计AccessToken、百度统计代码获取步骤教程

一、前言 很多网友开发者都不知道百度统计siteId、百度统计token怎么获取&#xff0c;在网上找的教程都是几年前老的教程&#xff0c;因此给大家出一期详细百度统计siteId、百度统计token、百度统计代码获取详细步骤教程。 二、登录到百度统计 1.1 登录到百度统计官网 使用个…

【利用冒泡排序的思想模拟实现qsort函数】

1.qsort函数 1.1qsort函数的介绍 资源来源于cplusplus网站 1.2qsort函数的主要功能 对数组的元素进行排序 对数组中由 指向的元素进行排序&#xff0c;每个元素字节长&#xff0c;使用该函数确定顺序。 此函数使用的排序算法通过调用指定的函数来比较元素对&#xff0c;并将指…

测试用例的编写(面试常问)

作者&#xff1a;爱塔居 专栏&#xff1a;软件测试 作者简介&#xff1a;不断总结&#xff0c;才能变得更好~踩过的坑&#xff0c;不能再踩~ 文章简介&#xff1a;常见的几个测试用例。 一、淘宝购物车 二、登录页面 三、三角形测试用例 abc结果346普通三角形333等边三角形334…

文件I/O与标准I/O

如果不知道inode&#xff0c;请看这篇文章inode 我们知道当打开一个文件时&#xff0c;OS会先使用inode编号在磁盘文件系统里面去寻找这个文件&#xff0c;找到以后根据文件的属性为其创建一个内核层面的结构体来描述这个文件&#xff0c;该结构体里面含有文件的属性信息&#…

我的创作纪念日 不忘初心,砥砺前行

机缘 本来我只是记录一些自己平时安装各种软件或者组件的教程&#xff0c;以及记录平时遇到的一些bug。 没想到一些教程收到了各位同学的喜爱。 收获 这篇VMware虚拟机安装Linux教程(超详细) 深受大家喜爱。写这篇文章的初衷一是为了记录&#xff0c;二是为了分享。自己一步…

操作符详解——(比特课件)

操作符怎么搞&#xff1f;没办法掌握基础知识就可以 ** 需要课件完整版的可以关注私信我&#xff01;&#xff01;&#xff01; 你的支持就是我更新的最大动力 **

String常见面试题

目录 1.String为什么不可变2.String和StringBuilder、StringBuffer的区别3.String为什么要设置为不可变4.判断定义为String类型的s1和s2是否相等5.下面这句话在内存中创建了几个对象?6.判断定义为String类型的s1和s2是否相等7.判断定义为String类型的s1和s2是否相等8.判断定义…

【PHP】如何关闭buffer实时输出内容到前端

前言 默认情况下&#xff0c;我们在PHP里使用echo等函数输出的内容&#xff0c;是不会马上发送给前端的&#xff0c;原因是有 buffer 的存在&#xff0c;buffer又分两处&#xff0c;一处是PHP本身的buffer&#xff0c;另一处是Nginx的buffer。只有当buffer满了之后&#xff0c…

unity打包工具

接手了一个项目&#xff0c;打包存在重大问题&#xff0c;故此在unity addressables 基础上弄了一个简单的打包工具&#xff0c;代码也都做好了注释&#xff0c;操作非常简单以下为操作方法&#xff1a; 首先设置导入Addressables插件&#xff0c;并设置好详细参见&#xff1a…

普通学校,普通背景,普通公司,不普通总结。

作者&#xff1a;阿秀 InterviewGuide大厂面试真题网站&#xff1a;https://top.interviewguide.cn 这是阿秀的第「313」篇原创 小伙伴们大家好&#xff0c;我是阿秀。 可能很多人点开牛客、知乎、B站&#xff0c;一看帖子的标题都是"某985xxxx"、"不入流211xxx…

一文读懂集合竞价,建议收藏,读完少交学费

集合竞价每个时间段交易规则及作用都不一样&#xff0c;了解集合竞价的规则&#xff0c;有利于琢磨主力的意图。 大部分同学都不是很关心集合竞价&#xff0c;也不知道如何利用集合竞价买卖股票。如上图所示&#xff0c;有同学在9点15看着股票涨停&#xff0c;立马冲进去&…

[Machine Learning][Part 2]监督学习的实现

目录 线性模型实现&#xff1a; cost function &#xff1a;代价函数或者损失函数——衡量模型优劣的一个指标 理论&#xff1a; 代码实现: 梯度下降——自动寻找最小的cost function 代价函数 梯度的概念&#xff1a; 梯度下降公式&#xff1a; 实现一个简单的监督学习…

web:[极客大挑战 2019]LoveSQL

题目 打开页面显示如下 查看源代码&#xff0c;查到一个check.php&#xff0c;还是get传参 尝试账号密码输入 题目名为sql&#xff0c;用万能密码 1or 11# 或 admin or 11 给了一段乱码&#xff0c;也不是flag 查看字段数 /check.php?usernameadmin order by 3%23&pass…

Go语言开发小技巧易错点100例(九)

往期回顾&#xff1a; Go语言开发小技巧&易错点100例&#xff08;一&#xff09;Go语言开发小技巧&易错点100例&#xff08;二&#xff09;Go语言开发小技巧&易错点100例&#xff08;三&#xff09;Go语言开发小技巧&易错点100例&#xff08;四&#xff09;Go…

Java之SpringCloud Alibaba【六】【Alibaba微服务分布式事务组件—Seata】

一、事务简介 事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。 在关系数据库中&#xff0c;一个事务由一组SQL语句组成。 事务应该具有4个属性: 原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。 原子性(atomicity) ∶个事务…

无人直播间

失败&#xff01;&#xff01; 采用 ffmpeg 技术进行推流 推流代码&#xff1a; 【需要将rtmp替换为你的推流地址】 ffmpeg -re -stream_loop -1 -i "rain.mp4" -c copy -f flv ""推流地址获取 以哔哩哔哩为例 点击下方链接 开播设置 - 个人中心 - …

Java【手撕链表】LeetCode 143. “重排链表“, 图文详解思路分析 + 代码

文章目录 前言一、两数相加1, 题目2, 思路分析2,1 找到中间结点2.2, 逆序后半段链表2.3, 合并两个链表 3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管…

springcloud之自我介绍

写在前面 在这篇文章 中我们分析了单体应用的问题&#xff0c;以及用来解决这些问题的解决的方案微服务&#xff0c;并接着看了微服务需要考虑的各种&#xff0c;如服务调用&#xff0c;负载均衡&#xff0c;服务治理&#xff0c;链路追踪&#xff0c;分布式事务&#xff0c;等…

Konva离屏缓存

前言 cache实例方法定义在Node基类上&#xff0c;通过该方法可以实现图形缓存&#xff0c;在Konva中Stage、Layer、Group、Shape等所有容器类和图形类都直接或间接继承了Node基类&#xff0c;故而都可以使用缓存方法。本篇文章就是探讨Konva背后的缓存机制&#xff0c;版本是v…