基于 Python+DenseNet121 算法模型实现一个图像分类识别系统

news2024/11/25 14:54:53

项目展示
请添加图片描述

一、介绍

DenseNet(Densely Connected Convolutional Networks)是一种卷积神经网络(CNN)架构,2017年由Gao Huang等人提出。该网络的核心思想是密集连接,即每一层都接收其前面所有层的输出作为输入。DenseNet121是该家族中的一个特定模型,其中121表示网络的总层数。 DenseNet121的主要特点如下:

  1. 密集连接(Dense Connection):在一个Dense Block内,第 i 层的输入不仅仅是第 i−1 层的输出,还包括第 i−2 层、第 i−3 层等所有之前层的输出。这种密集连接方式促进了特征的重用。

  2. 参数效率:由于特征在网络中得以重复使用,DenseNet相较于其他深度网络模型(如VGG或ResNet)通常需要更少的参数来达到相同(或更好)的性能。

  3. 特征复用与强化:密集连接方式也促进了梯度的反向传播,使得网络更容易训练。同时,低层特征能被直接传播到输出层,因此被更好地强化和利用。

  4. 过拟合抑制:由于有更少的参数和更好的参数复用,DenseNet很适合用于数据集较小的场合,能在一定程度上抑制过拟合。

  5. 增加网络深度:由于密集连接具有利于梯度反向传播的特性,DenseNet允许构建非常深的网络。

  6. 计算效率:虽然有很多连接,但由于各层之间传递的是特征图(而不是参数或梯度),因此在计算和内存效率方面表现得相对较好。

  7. 易于修改和适应:DenseNet架构很容易进行各种修改,以适应不同的任务和应用需求。

DenseNet121在很多计算机视觉任务中都表现出色,例如图像分类、目标检测和语义分割等。因其出色的性能和高效的参数使用,DenseNet121常被用作多种视觉应用的基础模型。以下DeseNet算法与ResNet算法的区别。

特性/算法DenseNetResNet
连接方式每一层都与其前面的所有层密集连接每一层仅与其前一层进行残差连接
参数效率更高,由于特征复用相对较低
特征复用高度的特征复用,所有前面层的输出都用作每一层的输入仅前一层的输出被用于下一层
梯度流动由于密集连接,梯度流动更容易通过残差连接改善梯度流动,但相对于DenseNet可能较弱
过拟合抑制更强,尤其在数据集小的情况下相对较弱
计算复杂度一般来说更低,尽管有更多的连接一般来说更高,尤其是在深层网络中
网络深度可以更深,且更容易训练可以很深,但通常需要更仔细的设计
可适应性架构灵活,易于修改相对灵活,但大多数改动集中在残差块的设计
创新点密集连接残差连接
主要应用图像分类、目标检测、语义分割等图像分类、目标检测、人脸识别等

这两种网络架构都在多种计算机视觉任务中表现出色,但根据具体应用的需求和限制,你可能会选择其中一种作为基础模型。

二、在TensorFlow中的应用

在TensorFlow(特别是TensorFlow 2.x版本)中使用DenseNet121模型非常方便,因为该模型已经作为预训练模型的一部分集成在TensorFlow库中。以下是一些常见用法的示例。

导入库和模型

首先,确保您已经安装了TensorFlow库。然后,导入所需的库和模型。

import tensorflow as tf
from tensorflow.keras.applications import DenseNet121

实例化模型

您可以通过以下方式实例化一个DenseNet121模型:

# 预训练权重和全连接层
model = DenseNet121(weights='imagenet', include_top=True)

# 预训练权重但无全连接层(用于特征提取)
model = DenseNet121(weights='imagenet', include_top=False)

数据预处理

DenseNet121需要特定格式的输入数据。通常,您需要将输入图像缩放到224x224像素,并进行一些额外的预处理。

from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.densenet import preprocess_input
import numpy as np

img_path = 'your_image_path.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

模型预测

使用预处理过的图像进行预测:

preds = model.predict(x)

三、实战案例

如下图所示,通过对几种常见的水果数据集进行训练,最后得到模型。下面是其经过25轮迭代训练的训练过程图、ACC曲线图、LOSS曲线图、可视化界面等

四、最后

大家可以尝试通过DenseNet121算法训练自己的数据集,然后封装成可视化界面部署等。

如需本项目完整代码可联系我,提供包括数据集、训练预测代码、训练好的模型、WEB网页端界面、包远程安装调试部署)。

建立了技术交流群!完整版代码、资料,期望技术交流的同学,都可以加微信号:dkl88194,获取。加的时候备注一下:研究方向 +学校/公司或者来意

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1050609.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CISSP学习笔记:安全脆弱性、威胁和对策

第九章 安全脆弱性、威胁和对策 9.1 评估和缓解安全脆弱性 9.1 硬件 处理器执行类型 多任务处理: 同时处理两个或更多任务多处理: 利用多个处理器完成一个应用程序的处理能力多程序设计:通过操作系统对单个处理器上的两个任务进行协调&…

AHH HackerHouse @Move大理站完美谢幕

Antalpha HackerHouse Move 大理站于2023年9月23日在面包树举办了Final DemoDay,这也代表着为期21天的 HackerHouse 活动完美谢幕。 自从9月3日开始,整整21天的共居时间里,我们从个体逐渐融汇成小团队,最终成为了一个紧密团结的大…

新手教程,蛋糕小程序的搭建流程一网打尽

作为一名新手,想要搭建一个蛋糕小程序可能会觉得有些困惑。但是,不用担心!今天我将为大家详细介绍蛋糕小程序的搭建流程,并带大家一步步完成。 首先,我们需要登录乔拓云网的后台。在登录成功后,点击进入商城…

OCI 发布了容器运行时和镜像规范!

7 月 19 日是开放容器计划Open Container Initiative(OCI)的一个重要里程碑,OCI 发布了容器运行时和镜像规范的 1.0 版本,而 Docker 在这过去两年中一直充当着推动和引领的核心角色。 我们的目标是为社区、客户以及更广泛的容器行…

医疗小程序开发:技术门槛高?

随着移动互联网的普及,医疗行业也逐渐转向线上。医疗小程序开发成为了很多企业和医疗机构关注的焦点。但是,对于一些技术小白来说,可能会觉得医疗小程序开发技术门槛高,无从下手。实际上,使用乔拓云平台进入后台&#…

《Python趣味工具》——ppt的操作(刷题版)

前面我们对PPT进行了一定的操作,并将其中的文字提取到了word文档中。现在就让我们来刷几道题巩固巩固吧! 文章目录 1. 查看PPT(上)2. 查看PPT(中)3. 查看PPT(下)4. PPT的页码5. 大学…

KUKA机器人通过3点法设置工作台基坐标系的具体方法

KUKA机器人通过3点法设置工作台基坐标系的具体方法 具体方法和步骤可参考以下内容: 进入主菜单界面,依次选择“投入运行”—“测量”—基坐标,选择“3点法”, 在系统弹出的基坐标编辑界面,给基座标编号为3,命名为table1,然后单击“继续”按钮,进行下一步操作, 在弹出的…

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式 FesianXu 20230928 at Baidu Search Team 前言 Prompt Tuning是一种PEFT方法(Parameter-Efficient FineTune),旨在以高效的方式对LLM模型进行下游任务适配,本…

车联网时代,能链车联凭什么成为“关键先生”?

又到国庆长假,许多人开启远途旅行,高速路上一如既往的拥堵。在密密麻麻的汽车中,新能源汽车变得越来越多。 事实上,新能源汽车的热潮,已经成为不可抵挡的趋势。据中国乘联会的最新数据,今年中国新能源乘用…

USB TypeC接口说明

USB TypeC 拥有诸多优点:双面可插不担心正反、可做USB/雷电高速传输载体,支持 PD快充、音频设备、HDMI传输、调试模式等诸多功能。 市面上的其他USB接口和充电接口在逐步被TypeC替代,可以预见的是,TypeC作为一种多兼容性接口,其未来会具有非常长的生命周期。 本文主要介…

Eclipse环境基于HDFS的API进行开发

文章目录 IOUtils方式读取文件1.文件准备2.下载安装Eclipse3.打开eclipse,新建java项目,添加关于hadoop的一些包4.包内新建类进行开发5.利用打包的方式生成java jar包6.验证代码正确性 其它问题:Exception in thread “main“ java.lang.Unsu…

TouchGFX界面开发 | 添加触摸屏驱动

使用STM32CubeMX移植TouchGFX 一文中介绍了如何用TouchGFX点亮屏幕,但是此时屏幕还没有触摸的功能。下面将介绍如何添加触摸屏驱动到TouchGFX中 一、STM32CubeMX配置 在使用STM32CubeMX移植TouchGFX 文中的STM32CubeMX配置基础上,再激活一个定时器&…

Pikachu靶场——XXE 漏洞

文章目录 1. XXE1.1 查看系统文件内容1.2 查看PHP源代码1.3 查看开放端口1.4 探测内网主机 1. XXE 漏洞描述 XXE(XML External Entity)攻击是一种利用XML解析器漏洞的攻击。在这种攻击中,攻击者通过在XML文件中插入恶意实体来触发解析器加载…

自然语言处理(NLP)学习之与HanLP的初相识

目录 前言 一、自然语言处理基本知识 1、NLP类别 2、核心任务 二、Hanlp简要介绍 三、Hanlp云服务能力 1、全新云原生2.x 2、Python api调用 3、Go api调用 4、Java api调用 四、Hanlp native服务 1、本地开发 总结 前言 在ChatGPT的滚滚浪潮下,也伴随着人工智…

深入理解JavaScript中的事件冒泡与事件捕获

在JavaScript中,事件是交互式网页开发中的关键概念之一。了解事件冒泡和事件捕获是成为一名优秀的前端开发者所必需的技能之一。本文将深入探讨这两个概念,解释它们是如何工作的,以及如何在实际应用中使用它们来处理事件。 一.什么是事件冒泡…

No151.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

冲刺十五届蓝桥杯P0002 日期统计

文章目录 题目分析代码 题目 分析 需要明白一些概念,子序列、连续子序列。 1.子序列(subsequence)是指原始序列中按照相同顺序选择零个或多个元素而形成的序列。连续子序列(subarray)是指原始序列中相邻位置的元素构…

计算机网络之传输层

计算机网络 - 传输层 计算机网络 - 传输层 UDP 和 TCP 的特点UDP 首部格式TCP 首部格式TCP 的三次握手TCP 的四次挥手TCP 可靠传输TCP 滑动窗口TCP 流量控制TCP 拥塞控制 1. 慢开始与拥塞避免2. 快重传与快恢复 网络层只把分组发送到目的主机,但是真正通信的并不是…

网络-OSI、TCP、浏览器URL、CDN

文章目录 前言一、OSI七层模型二、TCP/IP和UDPTCP三次握手四次挥手 三、 浏览器输入URLURLDNS查询TCP/IP连接浏览器缓存强缓存协商缓存断开连接 浏览器渲染 四、 CDN总结 前言 本文记录OSI七层参考模型,和TCP/IP基本介绍。 一、OSI七层模型 七层参考模型分别是&am…

【C++入门到精通】C++入门 —— set multiset (STL)

阅读导航 前言一、set简介二、std::set1. std::set简介2. std::set的使用- 基本使用- std::set的模板参数列表- std::set的构造函数- std::set的迭代器- std::set容量与元素访问函数 3. set的所有函数(表) 三、std::multiset1. std::multiset简介 四、st…