C++数学与算法系列之初等数论

news2025/1/24 22:47:28

1. 数

什么是数?

一个用作计数、标记或用作量度的抽象概念。

代表数的一系列符号,包括数字、运算符号等统称为记数系统

在日常生活中,数通常出现在标记(如公路、电话和门牌号码)、序列号和编码上。在数学里,数的定义延伸至包含如分数、负数、无理数、超越数及复数等抽象化的概念。

什么是数的进制?

数的表示方式,常用的有十进制、二进制、十六进制、八进制……

C++ 字面值常量默认用十进制表示:

int num=19; 

C++数值的二进制表示法:

int num=0B101; 

C++ 数值的八进制表示法:

int num=045; 

C++数值的十六进制表示法:

int num=0x45; 

C++输出以上变量中的数值时,编译器会统一转换成十进制后再输出。

进制的转换:如下讲解十进制转二进制,其它思路类似。十进制转换成二进制的思路:迭代除2反序取余数。

#include <iostream>
#include <stack>
using namespace std;
/*
*十进制转二进制
*/
int decimalToBinary(int num) {
	stack<int> myStack;
	while(num>0) {
		myStack.push(num % 2 );
		num=num / 2;
	}
	int newNum=0;
	while( !myStack.empty() ) {
		newNum=newNum*10+myStack.top() ;
		myStack.pop();
	}
	return newNum;
}
int main(int argc, char** argv) {
	int num=decimalToBinary(10);
	cout<<num;
	return 0;
}

十进制转八进制是迭代除8反序取余数、十进制转十六进制是迭代除16反序取余数。

2. 数论

什么是数论?

数论旧时称为算术,是专门研究整数的纯数学分支,到二十世纪初,它被“数学理论”所取代。

为了研究的方便,数论有很多针对性很强的分支,如初等数论解析数论代数数论几何数论计算数论超越数论组合数论算术代数几何……

其中计算数论:指借助电脑的算法帮助研究数论的问题,例如素数测试和因数分解等和密码学息息相关的课题。

算术代数几何:是数论发展到目前为止最深刻最前沿的领域, 可谓集大成者。它从代数几何的观点出发,通过深刻的数学工具研究数论的性质。

数论是一个庞大的主题,本文将讲解数论领域中一些较经典的结论。

2.1 欧几里德算法

欧几里得算法又称辗转相除法,用于求解两个正整数ab的最大公约数,扩展欧几里得算法算法可用于RSA加密等领域。

Tips: 最大公约数指能同时被 ab 整除的最大因数。

欧几里得算法的基本思路:

假如需要求 20222003 两个正整数的最大公约数,其流程如下:

  • 先用 2022 ÷ 2003=1 …… 19 (余数)
  • 2003 ÷ 19 = 105 …… 8
  • 19 ÷ 8 = 2 …… 3
  • 8 ÷ 3 = 2 …… 2
  • 3 ÷ 2 = 1 …… 1
  • 2 ÷ 1 = 2 …… 0

最后得到两数的最大公约数是 1

基本思想:让除数余数重复除法运算,当余数为 0 时,最后算式中的除数作为最大公约数。

欧几里德算法是一个反复迭代过程,可以使用递归和非递归 2 种方案实现:

  • 非递归。
#include <iostream>
using namespace std;
int main() {
	int num1;
	cin>>num1;
	int num2;
	cin>>num2;
	//最大公约数小于或等于 2 数中的小数 
	int minNum=	num1>num2? num2:num1;
	for(int i=minNum;i>0;i--){
		if( num1 % i==0 && num2 % i==0  ){
             //同时被 2 数整除
			cout<<i<<endl;
			break;
		}
	}
	return 0;
}
  • 递归。
#include <iostream>
using namespace std;
//求最大公约数
int gcd(int num1, int num2) {
	if (num1 % num2==0) return num2;
	else return gcd(num2, num1 % num2);
}
int main() {
	int num1;
	cin>>num1;
	int num2;
	cin>>num2;
	//最大公约数小于或等于 2 数中的小数
	if (num1<num2) {
		int temp=num1;
		num1=num2;
		num2=temp;
	}
	int res= gcd(num1,num2);
	cout<<res;
	return 0;
}

除了欧几里德算法,求解最大公约数还有Stein算法。

Stein算法由J. Stein1961年提出,这个方法也用于计算两个数的最大公约数。和欧几里得算法不同的是,Stein算法只有整数的移位和加减法。

Stein算法核心支撑理论:

  • gcd(a,a) = a,一个数和他自身的公约数是其自身。
  • gcd(ka,kb) = k gcd(a,b),最大公约数运算和倍乘运算可以交换,如当k=2时,说明两个偶数的最大公约数必然能被2整除。

如求 68,32的最大公约数的过程:

  • 根据 gcd(ka,kb) = k gcd(a,b) 特性。68和32 的最大公约数等于 68÷2=34和 32÷2=16的最大公约数。
  • 同理 34和16的最大公约数等于 34÷2=1716÷2=8的最大公约数。
  • 17和8的有一个数字是偶数,则其最大公约数等于 178÷2=4的最大公约数。
  • 17和4满足其中有一个数字是偶数,则最大公约数等于174÷2=2的最大公约数。
  • 17和2的最大公约数数等于 17和2÷2=1的最大公约数。
  • 17和1的最大公约数等于 (17-1)÷2=81的最大公约数。
  • 8和1的最大公约数等于8÷2=4和1的最大公约数。
  • 4和1的最大公约数等于4÷2=2和1的最大公约数。
  • 2和1的最大公约数等于2÷2=11的最大公约数。
  • 1和1的公约数是自身,最终结论68和32 的最大公约数是1

编程实现:

#include <iostream>
using namespace std;
//求解最大公约数
int gcd(int num1,int num2) {
	if(num1<num2) {
		//保证 num1 大于 num2
		int temp = num1;
		num1 = num2;
		num2=temp;
	}
	if(num2==0)
		//出口
		return num1;
	if(num1%2==0 && num2%2 ==0)
		//2 个数字都是偶数
		return 2*gcd(num1/2,num2/2);
	if (num1%2 == 0)
		//num1 是偶数
		return gcd(num1/2,num2);
	if (num2%2==0)
		//num2 是偶数
		return gcd(num1,num2/2);
	//都是奇数
	return gcd((num1-num2)/2,num2);
}
int main() {
	int res= gcd(56,48);
	cout<<res;
	return 0;
}

扩展欧几里得算法

已知整数ab,扩展欧几里得算法可以在求得a、b的最大公约数同时,能找到整数x、y(其中一个很可能是负数),使它们满足:a*x+b*y=gcd(a,b)

#include <iostream>
using namespace std;
int gcdEx(int num1,int num2,int * x,int* y) {
	if(num2==0) {
		*x=1;
		*y=0;
		return num1 ;
	} else {
		int r=gcdEx(num2,num1%num2,x,y);
		int t=*x ;
		*x=*y ;
		*y=t-num1/num2**y ;
		return r ;
	}
}
int main() {
	int num1;
	cin>>num1;
	int num2;
	cin>>num2;
	int x;
	int y;
	int res= gcdEx(num1,num2,&x,&y);
	cout<<"最大公约数:"<<res<<endl;
	int res_=num1*x+num2*y;
	cout<<num1<<"*"<<x<<"+"<<num2<<"*"<<y<<"="<<res_ <<endl;
	return 0;
}

2.2 埃氏筛法

埃拉托斯特尼筛法,简称埃氏筛或爱氏筛。算法说明:要得到自然数n以内的全部素数,必须把不大于所有素数的倍数剔除,剩下的就是素数。

算法演示:求解出 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25数列中的所有素数。

  • 找出序列中的第一个素数,也就是 2,将剩下序列中2的倍数划掉,序列变成 2 3 5 7 9 11 13 15 17 19 21 23 25
  • 找到素数3,将主序列中3的倍数划掉,主序列变成:2 3 5 7 11 13 17 19 23 25
  • 序列中第一个素数是5,同样将序列中5的倍数划掉,主序列成了2 3 5 7 11 13 17 19 23
  • 直到23小于5的平方,跳出循环。225之间的素数是:2 3 5 7 11 13 17 19 23
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
//缓存所有数字
int caches[100000]= {0};
//标记是否为素数 0 表示为素数, 1 表示不是
int flag[100000]= {0};

int main() {
     //数字范围
	int num;
	cin>>num;
	for(int i=2; i<=num; i++)
         //缓存
		caches[i]=i;
	//初始第一个素数
	flag[2]=0;
    //左指针
	int left=2;
    //右指针
	int right=num;
	while( 1 ) {
		if(flag[left]==0) {
			//清除与此素数为倍数的其它数字,仅做标记
			int j=2;
			while( caches[left] *j<= caches[right] ) {
				flag[ caches[left] *j ]=1;
				j++;
			}
		}
		//重新确定右边位置
		while(caches[right]==1 ) {
			right--;
		}
		left++;
         //结束循环条件
		if( flag[left]==0 && pow( caches[left],2 ) > caches[right] )
			break;
	}
	//输出
	for(int i=2; i<=num; i++)
		if(flag[i]==0)
			cout<<caches[i]<<"\t";
	return 0;
}

输出结果:

19.png

2.3 哥德巴赫猜想

哥德巴赫猜想:是否每个大于2的偶数都可写成两个质数之和?

哥德巴赫猜想是不是正确的,姑且不论,但可借助程序,在计算机能存储的最大数字范围内证明猜想的正确性。

#include <iostream>
#include <cmath>
using namespace std;
//缓存器,记录某个数字是不是素数 1 表示是 ,2 表示不是
int caches[100000]= {0};
//判断是不理素数
bool isSs(int num) {
	bool is=true;
	for(int i=2; i<=int(sqrt(num)); i++ ) {
		if(num % i==0 ) {
			is=false;
			break;
		}
	}
	return is;
}
//缓存素数和非素数信息
bool cacheNum(int num) {
	int res=caches[num];
	if( res==0 ) {
		if(isSs(num)) {
			//是素数
			caches[num]=1;
			return 1;
		} else {
			//不是素数
			caches[num]=2;
			return 0;
		}
	} else if( res==2 ) {
		return 0;
	}
	return 1;
}
/*
* 哥德巴赫猜想
* 偶数是否能拆分成 2 个素数之和
*/
bool gdbh(int num) {
	if (num % 2!=0)return false;
	int left=2;
	int right=num-1;
	int sum=0;
	while ( left<=right ) {
		if(cacheNum(left) && cacheNum(right)  ) {
             // 2 个数字都是素数
			sum=left+right;
			if(sum==num) {
				cout<<left<<"+"<<right<<"="<<num<<endl;
				return true;
			} else if(sum>num)
                 //变小一点
				right--;
			else
                 //变大一点
				left++;
		} else if(!cacheNum(left)) {
             //左边不是素数
			left++;
		} else if(!cacheNum(right)) {
             //右边不是素数
			right--;
		} else {
             //2个数字都不是素数
			left++;
			right--;
		}
	}
	return false;
}

int main() {
	//检查 10000 之内的所有大于 2 的偶数
	int count=0;
	int count_=0;
	for(int i=4; i<=100000; i+=2) {
		count_++;
		if( gdbh(i) )
			count++;
	}
	if(count_==count) {
		cout<<"100000 之内的偶数都可以拆分成 2个素数相加;"<<endl;
	}
	return 0;
}

输出结果:

16.png

把这个范围扩大到计算机的存储极限点,还是可以证明此猜想的正确性。至于范围扩大至无穷大之后,此猜想是否正确就留给数学家们继续猜想吧。

2.4 孪生素数猜想

孪生素数就是差为2的素数对,例如1113。是否存在无穷多的孪生素数?

是不是有无穷多个,这个留给数学界去思考,但是可以通过编码找出指出范围之内的所有孪生素数。

#include <iostream>
#include <cmath>
using namespace std;
//缓存器,记录某个数字是不是素数 1 表示是 ,2 表示不是
int caches[100000]= {0};
//判断是不是素数 
bool isSs(long long num) { //省略…… }

//缓存素数和非素数信息
bool cacheNum(int num) { //省略…… }

//孪生素数
int lsss(int num) {
	if( cacheNum(num) &&  cacheNum(num+2) ) {
		//是素数,且相邻为 2 的数字也素数
		cout<<"("<<num<<","<<(num+2)<<")"<<"\t";
	}
}
//测试
int main() {
	cout<<"100000内的孪生素数:"<<endl;
	for(int i=2; i<=100000; i++) {
        if(i!=2 && i%2==0)continue;
		lsss(i);
	}
	return 0;
}

输出结果:

17.png

2.5 斐波那契数列内是否存在无穷多的素数

可以通过编程求证在计算机所能计算的范围内尽可能找出斐波拉契数列中的素数。

#include <iostream>
#include <cmath>
using namespace std;
//判断是不是素数
bool isSs(long long num) {
	bool is=true;
	for(long long i=2; i<=int(sqrt(num)); i++ ) {
		if(num % i==0 ) {
			is=false;
			break;
		}
	}
	return is;
}
/*
*找出斐波拉契数列中的素数
* 参数表示:多少个
*/
int fblq(long long num) {
	long long first=1;
	long long second=1;
	long long thir=0;
	long long count=0;
	for(long long i=1; i<=num; i++) {
		thir=first+second;
		cout<<thir;
		if( isSs(thir)  ) {
			cout<<"-"<<thir;
			count++;
		}
		cout<<endl;
		first=second;
		second=thir;
	}
	return count;
}

int main() {
	int res= fblq(50);
	cout<<"\n 斐波拉契数列中的素数有:"<<res<<endl;
	return 0;
}

2.6 梅森素数

所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为Mp。如果梅森数是素数,就称为梅森素数。目前仅发现51个梅森素数,最大的是M82589933(即282589933-1),有24862048位。

是否存在无穷多个梅森素数是未解决的著名难题之一,但可以通过编程让计算机在能力所及范围内尽可能找出一些。

#include <iostream>
#include <cmath>
using namespace std;
//缓存器,记录某个数字是不是素数 1 表示是 ,2 表示不是
int caches[100000]= {0};
//判断是不是素数 
bool isSs(long long num) { //省略…… }

//缓存素数和非素数信息
bool cacheNum(int num) { //省略…… }

int main() {
	int temp=0;
	cout<<"100000内的孪生梅森素数:"<<endl;
	for(int i=2; i<=100000; i++) {
		if(i!=2 && i%2==0)continue;
		if( cacheNum(i)  ) {
			temp= pow(2,i)-1;
			if( cacheNum(temp) )
				cout<<"P:"<<i<<" 梅森数:"<<temp<<endl;
		}
	}
	return 0;
}

输出结果:

18.png

3. 总结

数论是一个复杂庞大的体系,至今为止,数论中有些经典问题已经被证明,有些问题还需时日。随着计算机硬件的发展,将会为解决纯数学理论提供了强有力的支撑,相信不久的将来,很多问题都可以解决。

本文仅讲解了常用的数论问题,除此之外,还有很多其它有趣的数论问题,有兴趣者可以自行了解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/105037.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一年后,那个残酷的 Log4j 漏洞仍然潜伏

©网络研究院 一年前&#xff0c;随着俄罗斯在其与乌克兰的边境集结军队以及Covid-19 Omicron 变种开始在全球范围内激增&#xff0c;Apache 软件基金会披露了一个漏洞&#xff0c;在全球科技行业掀起了一阵狂热。 该错误称为 Log4Shell&#xff0c;在无处不在的开源日志…

《MySQL系列-主从相关》Docker安装MySQL,实现主从复制

Docker安装MySQL&#xff0c;实现主从复制 一、前言 1 Docker安装MySQL 参考历史文章Docker安装MySQL&#xff0c;准备两台MySQL容器 master节点 容器名称 MySQL01 容器ID faf2312fd62a 端口 33061 slave节点 容器名称 MySQL01 容器ID dfc693c2bb04 端口 33062 2 M…

【Numpy基础知识】Datatypes数据类型

Numpy 数据类型 来源&#xff1a;Numpy官网&#xff1a;https://numpy.org/doc/stable/user/basics.html 文章目录Numpy 数据类型导包【1】数组类型和类型之间的转换【2】数组标量【3】溢出错误【4】扩展精度导包 import numpy as np【1】数组类型和类型之间的转换 NumPy支持…

弃购频频发生?跨境电商卖家必知的弃购原因以及解决方案!

关键词&#xff1a;弃购、跨境电商卖家 电子商务商店平均有 75% 的销售额因数字购物车放弃而损失。 本文分解了放弃购物车的主要原因&#xff08;以及如何预防&#xff09;。 放弃购物车的十大原因 放弃购物车是一个问题。正如我们在介绍中分享的那样&#xff0c;据估计&#…

使用css3实现一个超浪漫的新年倒计时

新年快到了&#xff0c;使用css3实现一个超浪漫的新年倒计时吧&#xff0c;希望大家喜欢。 目录 1 实现思路 2 实现浪漫的心形背景 3 布局小时分钟和秒的区域 4、js倒计时 5、然后就是将所得的小时、分钟、秒对DOM进行赋值 6、每秒一更新 7、补充知识点1- 倒计时为什…

爆款微信小游戏,你都知道几款?

紧随微信2017年上线小程序平台&#xff0c;11月份便开始向各大小游戏厂商发送邀请函开发微信小游戏。2017年12月28日&#xff0c;微信正式对外开放微信小游戏。 就微信小游戏来说&#xff0c;其开发者数量在今年已经超过10万人&#xff1b;而产品方面除了《跳一跳》《羊了个羊…

全网首次揭秘:微秒级“复活”网络的HARP协议及其关键技术

导读&#xff5c;云计算时代&#xff0c;承担服务器之间数据传输工作的交换机成了数据中心的“神经枢纽”&#xff0c;一旦出故障将波及上层业务。然而单个交换机故障时&#xff0c;腾讯云的新一代高性能网络却可以在100微秒内找到新的通路实现0断链&#xff0c;做到高可用、高…

基于springboot layui疫苗接种信息管理系统源码

开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;springboot layui 伴随着社会的迅速发展&#xff0c;电子计算机对世界的作用影响是全面并且长久的。人们日常生活消费综合应用水平的持续增高&#xff0c;生活中人…

[ 数据结构 -- 手撕排序算法总结篇 ]

文章目录前言一、常见的排序算法二、测试排序的性能对比随机数排序时间对比有序数排序时间对比三、排序算法的复杂度四、排序算法的稳定性前言 手撕排序算法总结 本篇文章进行总结&#xff0c;我会对比并分析常见的几种排序&#xff0c;例如像插入排序&#xff0c;冒泡排序&am…

【金猿案例展】福特电马——一键五联私域流量运营

‍映盛中国案例本项目案例由映盛中国投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。‍数据智能产业创新服务媒体——聚焦数智 改变商业随着中国电动车市场及消费者对电动汽车的需求的不断变化&#xff0c;汽车市场进入存量竞争时…

如何用VS2010创建并生成动态链接库

1、目的 在某些应用程序场景下&#xff0c;需要将一些类或者方法编译成动态链接库dll&#xff0c;以便别的.exe或者.dll文件可以通过第三方库的方式进行调用&#xff0c;下面就简单介绍一下如何通过VS2010来创建动态链接库。 2、新建动态链接库 1&#xff09; 打开VS2010&…

546103-85-9,PR-AMC,二肽标记肽

PR-AMC, a fluorogenic Plasmodium falciparum dipeptidyl aminopeptidase 1 (DPAP1, cathepsin C) substrate.一种含氟恶性疟原虫二肽基氨基肽酶1 (DPAP1&#xff0c;组织蛋白酶C)底物。编号: 177167 中文名称: 二肽标记肽PR-7-氨基-4-甲基香豆素2HCl英文名: H-Pro-Arg-AMCCAS…

clickhouse 数据字典使用详解

一、数据字典介绍 数据字典是ClickHouse提供一种非常简单且实用的存储媒介&#xff0c;他以键值和属性映射的形式定义数据。字典中的数据会主动或被动加载到内存并支持动态更新。由于字典数据常驻内存的特性&#xff0c;所以非常适合保存常量或经常使用的维度表数据&#xff0c…

2001-2020年沪深A股上市公司管理者短视主义指标数据

2001-2020年沪深A股上市公司管理者短视主义指标数据 1、时间&#xff1a;2001-2020年 2、包括所有沪深A股所有上市公司 3、指标包括&#xff1a; 证券代码&#xff1a;以上海证券交易所和深圳证券交易所公布的证券代码为准。 证券简称&#xff1a;以上海证券交易所和深圳证…

从搭建到落地,详解证券基金行业数字化运营体系

近年来&#xff0c;金融行业的数字化转型呈现了新的特点&#xff0c;即要做更精准的营销和数字化运营。本文根据神策数据杨雪杉关于《面向落地的证券基金行业运营体系搭建》的主题演讲整理&#xff0c;点击文末“阅读原文”即可观看完整版演讲回放。一、基于 SDAF 数据闭环方法…

ubuntu20.04 设置 rc.local 开机自启动脚本一文配置

前言 系统:ubuntu20.04LTS 本来觉得似乎好像是一件简单的事情 实际运行处理的时候发现还是有点复杂,面对这样的过程中的总结如下: 第一步 终端执行查看开机可以启动的服务, 执行 ls /lib/systemd/system 你可以看到有很多启动脚本, 其中就有我们需要的 rc-local.s…

让你室友、工友、小孩断网 安全风险演示

前提&#xff1a; ① 、你需要 和 你室友处于同一个局域网&#xff0c;互相能ping通 ②、你需要知道你室友的IP ③、您可能需要一个linux 设备&#xff0c;手机也行&#xff08;需要安装termux 来执行命令&#xff09;、linux系统电脑、树莓派等都可以。 -----------------…

【MAX7800羽毛板更新固件及下载bug修复】

【MAX7800羽毛板更新固件及下载bug修复】1. 前言2. 首次固件更新2.1 更新MAX32625PICO&#xff08;“PICO”&#xff09;调试适配器固件2.2 使用eclipse开发3. 下载bug修复3.1 当你的下载口出现Error: Target not examined yet3.2 修复方法5. 小结1. 前言 原理图和BOM可在MAX7…

express再度复习,小白篇

js----后端编程&#xff0c;Express框架,npm包管理工具,- es6模块化,使用express创建web应用,路由拆分&#xff0c;中间件 &#xff0c; 热更新&#xff0c;脚手架_阿 尭的博客-CSDN博客之前学习的时候整理的一篇草率博客&#xff0c;复习的时候混忘了。今天再重新学习一下expr…

【强化学习基础】强化学习的基本概念:状态、动作、智能体、策略、奖励、状态转移、轨迹、回报

文章目录1.状态&#xff08;State&#xff09;2.动作&#xff08;Action&#xff09;3.智能体&#xff08;Agent&#xff09;4.策略&#xff08;Policy&#xff09;5.奖励&#xff08;Reward&#xff09;6.状态转移&#xff08;State transition&#xff09;7.智能体与环境交互…