目录
1. 前言
2.环境配置
(1) RK3588开发板Python环境
(2) PC转onnx和rknn的环境
3.PT模型转onnx
4. ONNX模型转RKNN
6.测试结果
1. 前言
yolov8就不介绍了,详细的请见YOLOV8详细对比,本文章注重实际的使用,从拿到yolov8的pt检测模型,怎样转onnx和rknn的使用,配置好相应的环境,就可以开心的做yolov8的检测啦!!!
2.环境配置
(1) RK3588开发板Python环境
numpy ==1.26.0
onnxruntime == 1.16.0
opencv-python== 4.8.0.76
rknn-toolkit-lite2 ==1.5.2
(2) PC转onnx和rknn的环境
Python == 3.10
ultralytics ==8.0.147
rknn_toolkit2 == 1.5.2
torch ==2.0.1
torchvision==0.15.2
相关的库缺少什么就安装,很简单的
3.PT模型转onnx
根据自己模型路径设置model_path,输入的shape也自己设置,我这里设置的是640*640,这样就得到了onnx模型,按道理是可以做推理了
from ultralytics import YOLO
# pip install ultralytics
input_width = 640
input_height = 640
model_path = "./models/yolov8x.pt"
model = YOLO(model_path)
model.export(format="onnx", imgsz=[input_height, input_width], opset=12)
4. ONNX模型转RKNN
rknn用FP16,用INT8设置了,但是量化效果精度有误差,用混合量化或者增加量化数据集,都可以试试(我偷懒就不尝试了)
from rknn.api import RKNN
ONNX_MODEL = 'yolov8n-sim.onnx'
RKNN_MODEL = 'yolov8n-sim-fp16.rknn'
IMG_PATH = './bus.jpg'
DATASET = './dataset.txt'
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN()
if not os.path.exists(ONNX_MODEL):
print('model not exist')
exit(-1)
# pre-process config
print('--> Config model')
rknn.config(mean_values=[[0, 0, 0]], std_values=[[1, 1, 1]], target_platform='rk3588')
print('done')
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
print('Load yolov8 failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False, dataset=DATASET)
if ret != 0:
print('Build yolov8 failed!')
exit(ret)
print('done')
# Export RKNN model
print('--> Export RKNN model')
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
print('Export yolov8rknn failed!')
exit(ret)
print('done')
# Ret = rknn.accuracy_analysis(inputs=['./bus.jpg'])
# if ret != 0:
# print('Accuracy analysis failed!')
# exit(ret)
# print('done')
5. RK3588推理
代码使用的是https://github.com/ibaiGorordo/ONNX-YOLOv8-Object-DetectionibaiGorord博主的基础代码,在YOLOv8中集成了rknn模型的推理
import cv2
from yolov8 import YOLOv8
# Initialize yolov8 object detector
# model_path = "./models/yolov8n-sim.onnx"
model_path = "./models/yolov8n-sim-fp16.rknn"
yolov8_detector = YOLOv8(model_path, conf_thres=0.3, iou_thres=0.5)
# Read image
img = cv2.imread('./bus.jpg')
# Detect Objects
boxes, scores, class_ids = yolov8_detector(img)
# Draw detections
combined_img = yolov8_detector.draw_detections(img)
cv2.imwrite("./detected_objects.png", combined_img)
6.测试结果
onnx推理结果 | rknn推理结果 |
使用的是yolov8n模型,检测的速度加速了8倍,量化成int8的话应该还要更加快!!!
完整的代码在资源中下载