竞赛 基于深度学的图像修复 图像补全

news2024/11/18 1:40:17

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学的图像修复 图像补全

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })

            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })

            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1039950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

孙哥Spring源码第25集

第25集、处理代理中获取代理进行方法调用 0、问题所在 1、实现ApplicationContextAware接口实现代理 它的处理是在ApplicationContextAware中处理的 2、ExposeProxy分析 整体 分析 如何设置成了false就会有下面的问题 3、使用EnableAspectJAutoProxy解决代理问题 4、到底如何…

让自己敲代码的速度起飞

前言 打字速度可以说是成为一名程序员的基本功,程序员的打字速度在工作中越来越重要,下面就为大家分享一下我在联系打字速度的时候一些小经验,希望对大家有帮助。 刚开始学习编程的时候,我每天都会抽出1个小时进行打字练习&…

微信小程序实现拍照并拿到图片对象功能

微信小程序提供了函数chooseImage 我们可以在wxml中定义一个按钮 <view><button bindtap"photograph">拍照</button> </view>这里绑定了一个点击事件 叫 photograph 然后 我们在js中编写代码如下 //import { getAll } from "../../ap…

在B站上如何把已经上传的视频做成合集?

参考视频: 【在B站上如何把已经上传的视频做成合集&#xff1f;】 https://www.bilibili.com/video/BV1Uf4y1G7eR/?share_sourcecopy_web&vd_source8af85e60c2df9af1f0fd23935753a933 【B站投稿视频合集的几种方式最全攻略】 https://www.bilibili.com/video/BV1jZ4y1h7…

LLM-TAP随笔——大语言模型基础【深度学习】【PyTorch】【LLM】

文章目录 2.大语言模型基础2.1、编码器和解码器架构2.2、注意力机制2.2.1、注意力机制&#xff08;Attention&#xff09;2.2.2、自注意力机制&#xff08;Self-attention&#xff09;2.2.3、多头自注意力&#xff08;Multi-headed Self-attention&#xff09; 2.3、transforme…

Unity之Hololens如何实现3D物体交互

一.前言 什么是Hololens? Hololens是由微软开发的一款混合现实头戴式设备,它将虚拟内容与现实世界相结合,为用户提供了沉浸式的AR体验。Hololens通过内置的传感器和摄像头,能够感知用户的环境,并在用户的视野中显示虚拟对象。这使得用户可以与虚拟内容进行互动,将数字信…

【算法】算法设计与分析 课程笔记 第二章 递归与分治策略

2.1 递归 直接或间接地调用自身的算法称为递归算法。 用函数自身给出定义的函数称为递归函数。 2.1.1 阶乘 首先得想到一个求阶乘的函数&#xff1a; 这个函数的下面那个式子就用到了调用自身&#xff0c;所以可以用递归来实现&#xff0c;将主问题拆分成若干层的子问题&am…

分享从零开始学习网络设备配置--任务3.7 使用动态路由RIPv2实现网络连通

任务描述 某公司随着规模的不断扩大&#xff0c;路由器的数量开始有所增加。网络管理员发现原有的静态路由已经不适合现在的公司&#xff0c;实施动态路由RIPv2协议配置&#xff0c;实现网络中所有主机之间互相通信。 在路由器较多的网络环境中&#xff0c;手工配置静态路由…

Level FHE 的高效实现 兼容 Level FHE 的高级算法

参考文献&#xff1a; [CS05] Choi Y, Swartzlander E E. Parallel prefix adder design with matrix representation[C]//17th IEEE Symposium on Computer Arithmetic (ARITH’05). IEEE, 2005: 90-98.[SV11] Smart N P, Vercauteren F. Fully homomorphic SIMD operations[…

基于微信小程序的校园商铺系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言学生端微信端&#xff0c;主要功能有&#xff1a;商家的主要功能有&#xff1a;管理员的主要功能有&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 …

商家收款2000手续费多少

目前不管是微信商户或者支付宝商户最低费率可以达到0.2%费率&#xff1b;市面上普通个体商户或者企业商家的收款费率一般在0.6左右&#xff0c;一些使用第三方聚合支付平台的也有使用0.38的&#xff0c;总体也就是10000块钱的费率是38-60块钱&#xff0c;对于一些流水比较大的商…

微调大模型工具-LoRA

介绍 微调 在机器学习领域&#xff0c;大型模型已成为解决各种问题的首选解决方案。从自然语言处理到计算机视觉&#xff0c;这些计算能力的庞然大物都表现出了无与伦比的性能。然而&#xff0c;这种性能实际上是有代价的。微调这些大型模型以适应特定任务或领域是一个资源密…

GE IS220PVIBH1A 336A4940CSP16 电源模块

GE IS220PVIBH1A 336A4940CSP16 电源模块是通用电气&#xff08;GE&#xff09;的一种电源模块&#xff0c;用于工业控制和电力系统中&#xff0c;提供电源供应和保护功能。以下是这种类型电源模块的一般特点和功能&#xff1a; 电源供应&#xff1a;GE IS220PVIBH1A 336A4940C…

编写基于冒泡排序算法的qsort函数

目录 1.简单认识冒泡排序 2.进入正文分析如何实现函数 3.1比较两个相邻元素的大小 3.2比较两个相邻元素大小后要换函数 4.my_qsort函数&#xff1a; 5.总结&#xff1a; 1.简单认识冒泡排序 冒泡排序的步骤如下&#xff1a; 比较相邻的两个元素&#xff0c;如果第一个元素比…

TS编译选项——不允许使用隐式any类型、不明确类型的this、严格检查空值、编译后文件自动设置严格模式

一、不允许使用隐式any类型 在tsconfig.js文件中配置noImplicitAny属性 {"compilerOptions": {// 不允许使用隐式any类型"noImplicitAny": true} } 开启后即可禁止使用隐式的any类型 注意&#xff1a;显式的any类型并不会被禁止 二、不允许使用不明确类…

亚马逊儿童自行车,滑板车等电动移动设备合规标准UL报告如何办理?UL 2272、UL 2849

加拿大 儿童自行车 儿童自行车适用于 14 岁以下儿童。儿童自行车的车轮由两个轮子组成&#xff0c;一个在另一个后面&#xff0c;通过踩踏推动&#xff0c;用连接在前轮上的车把操纵。其中一些可能配备有训练轮&#xff0c;这是一对平行于后轮的额外的车轮&#xff0c;可防止自…

ShapeableImageView 不只是圆形ImageView

偶然间看到了这位老哥的 https://juejin.cn/post/6869376452040196109#comment 文章&#xff0c;发现了ShapeableImageView–一个多形状的ImageView &#xff0c;虽然似乎发布了很久了&#xff0c;现在学习不晚。 效果图 布局文件 <com.google.android.material.imageview.S…

yyyy/MM/dd与yyyy-MM-dd使用new Date().getTime()时间转换不相等?!!

起源 该问题发现于日期组件增加国家法定假节假日的禁用&#xff0c;通过pickerOptions属性定义disabledDate方法实现 export default {data () {return {holidayList: [2023-01-01,2023-01-02,2023-01-21,2023-01-22,2023-01-23,2023-01-24,2023-01-25,2023-01-26,2023-01-27…

SQL注入——预编译CASE注入

文章目录 预编译 CASE 注入1. SQL注入漏洞防御2. WEBGOAT SQL注入2.1 WebGoat 8.02.2 Order by 注入2.2.1 构造 when 的条件2.2.2 代码审计 预编译 CASE 注入 预编译 CASE&#xff08;Prepared CASE&#xff09;是一种数据库查询语言&#xff08;如SQL&#xff09;中的控制语句…