AIX360-CEMExplainer: MNIST Example

news2025/1/11 21:05:58

CEMExplainer: MNIST Example

  • 这一部分屁话有点多,导包没问题的话可以跳过
  • 加载MNIST数据集
  • 加载经过训练的MNIST模型
  • 加载经过训练的卷积自动编码器模型(可选)
  • 初始化CEM解释程序以解释模型预测
  • 解释输入实例
  • 获得相关否定(Pertinent Negative,PN)解释
  • 获得相关的肯定(Pertinent Positive,PP)解释
  • 相关负(PN)和相关正(PP)解释图

CEMBexplainer:MNIST示例

  • 本文了如何使用AIX360的CEMBexplainer来获得对比解释的示例,即对MNIST数据训练的模型所做预测的相关否定(PN)和相关肯定(PP)。
  • CEMBexplainer是对比解释方法的一种实现。
  • 此案例使用经过训练的模型,这些模型可从aix360/models/CEM/文件夹访问。

官方代码在https://github.com/Trusted-AI/AIX360/blob/master/examples/contrastive/CEM-MNIST.ipynb

这一部分屁话有点多,导包没问题的话可以跳过

pip install keras
pip install --user tensorflow
import os
import sys
from keras.models import model_from_json
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np

from aix360.algorithms.contrastive import CEMExplainer, KerasClassifier
from aix360.datasets import MNISTDataset

经典一步一bug,眼睛一睁一闭,休眠升天修仙。。。
在这里插入图片描述
TensorFlow 2.0中contrib被弃用,尝试安装旧版tensorflow

conda install tensorflow==1.14.0

在这里插入图片描述
看到这我真的高兴坏了,之前不小心把python版本装高了,没办法,就是这么倒霉,推倒重来,官网怎么喜欢用那么老的版本,为什么我的眼里常含泪水,因为对知识爱得深沉。。。

重新创建个虚拟环境,
python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6
https://blog.csdn.net/weixin_45735391/article/details/133197625
python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6python3.6

清华源似乎没有这个古老的版本。。。
在这里插入图片描述
emmmm,又是一个坑。。。

python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7
https://blog.csdn.net/weixin_45735391/article/details/133197625
python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7python3.7
此倒霉蛋已疯。。。

tensorflow装好了,又多活了一天,欧耶!!!
在这里插入图片描述
可是
在这里插入图片描述
此人g了。。。那就pip吧。。。

pip install aix360

在这里插入图片描述
看着它那么红,就让它红这吧。。。

人生嘛,惊喜不断,不然多无聊,哈哈哈。。。
在这里插入图片描述

pip install skimage

在这里插入图片描述
在这里插入图片描述

pip install scikit-image

还差亿点点。。。
在这里插入图片描述

conda install pytorch

还差亿点点。。。
在这里插入图片描述

conda install requests

不想看见这坨警告的话,可以加上

import warnings
warnings.filterwarnings("ignore")

在这里插入图片描述

好了,导包这块终于结束了。
又多活了一天,真不错,今天是个好日子。。。

加载MNIST数据集

# load MNIST data and normalize it in the range [-0.5, 0.5]
data = MNISTDataset()

花的时间有亿点点久。。。真的等不下去了。。。脑子已经在修仙了。。。
在这里插入图片描述
看看源码写的啥

class MNISTDataset():
    def __init__(self, custom_preprocessing=None, dirpath=None): 
        self._dirpath = dirpath
        if not self._dirpath:
            self._dirpath = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                '..', 'data','mnist_data')

        files = ["train-images-idx3-ubyte.gz",
                 "t10k-images-idx3-ubyte.gz",
                 "train-labels-idx1-ubyte.gz",
                 "t10k-labels-idx1-ubyte.gz"]
        for name in files:
            if not os.path.exists(self._dirpath + "/" + name):
                print("retrieving file", name)
                urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/' + name, self._dirpath + "/" + name)
                print("retrieved")

        train_data       = extract_data(self._dirpath + "/train-images-idx3-ubyte.gz", 60000)
        train_labels     = extract_labels(self._dirpath + "/train-labels-idx1-ubyte.gz", 60000)
        self.test_data   = extract_data(self._dirpath + "/t10k-images-idx3-ubyte.gz", 10000)
        self.test_labels = extract_labels(self._dirpath + "/t10k-labels-idx1-ubyte.gz", 10000)
        
        VALIDATION_SIZE = 5000
        
        self.validation_data = train_data[:VALIDATION_SIZE, :, :, :]
        self.validation_labels = train_labels[:VALIDATION_SIZE]
        self.train_data = train_data[VALIDATION_SIZE:, :, :, :]
        self.train_labels = train_labels[VALIDATION_SIZE:]

直接百度搜一下下载MNIST数据集,找到别人分享的资源,把这四个文件["train-images-idx3-ubyte.gz","t10k-images-idx3-ubyte.gz","train-labels-idx1-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]下载下来。

然后代码改一下,dirpath就是那四个文件的保存路径。

dirpath = r'C:\Users\gxx\Desktop\jupter\aix360\MNIST'
data = MNISTDataset(dirpath=dirpath)
# print the shape of train and test data
print("MNIST train data range  :", "(", np.min(data.train_data), ",", np.max(data.train_data), ")")
print("MNIST test data range   :", "(", np.min(data.train_data), ",",  np.max(data.train_data), ")")
print("MNIST train data shape  :", data.train_data.shape)
print("MNIST test data shape   :", data.test_data.shape)
print("MNIST train labels shape:", data.test_labels.shape)
print("MNIST test labels shape :", data.test_labels.shape)

输出结果

MNIST train data range  : ( -0.5 , 0.5 )
MNIST test data range   : ( -0.5 , 0.5 )
MNIST train data shape  : (55000, 28, 28, 1)
MNIST test data shape   : (10000, 28, 28, 1)
MNIST train labels shape: (10000, 10)
MNIST test labels shape : (10000, 10)

加载经过训练的MNIST模型

此notebook使用经过训练的MNIST模型。此处提供了训练此模型的代码。请注意,该模型输出logits,并且不使用softmax函数。
把官网上的文件复制到本地,改一下路径。

# path to mnist related models
# model_path = '../../aix360/models/CEM'
model_path = r'C:\Users\gxx\Desktop\jupter\aix360\CEM'

def load_model(model_json_file, model_wt_file):
    
    # read model json file
    with open(model_json_file, 'r') as f:
        model = model_from_json(f.read())
    
    # read model weights file
    model.load_weights(model_wt_file)
    
    return model
    

# load MNIST model using its json and wt files
mnist_model = load_model(os.path.join(model_path, 'mnist.json'), os.path.join(model_path, 'mnist'))

# print model summary
mnist_model.summary()

不出意外,bug又来了。。。
在这里插入图片描述
在这里插入图片描述
在安装 tensorflow 时,默认安装 h5py 为3.7.0,而报错是因为安装的 TF 不支持过高版本的 h5py。
卸 载 h5py 3.7.0版本,安装 h5py 2.10.0 版本。

pip uninstall --user h5py
pip install --user h5py==2.10.0

结果输出:
在这里插入图片描述

加载经过训练的卷积自动编码器模型(可选)

这个notebook使用了一个经过训练的卷积自动编码器模型。此处提供了训练此模型的代码。

# load the trained convolutional autoencoder model
ae_model = load_model(os.path.join(model_path, 'mnist_AE_1_decoder.json'), 
                      os.path.join(model_path, 'mnist_AE_1_decoder.h5'))
# print model summary
ae_model.summary()

在这里插入图片描述

初始化CEM解释程序以解释模型预测

# wrap mnist_model into a framework independent class structure
mymodel = KerasClassifier(mnist_model)

# initialize explainer object
explainer = CEMExplainer(mymodel)

解释输入实例

# choose an input image
image_id = 340
input_image = data.test_data[image_id]

# rescale values from [-0.5, 0.5] to [0, 255] for plotting
plt.imshow((input_image[:,:,0] + 0.5)*255, cmap="gray")

# check model prediction
print("Predicted class:", mymodel.predict_classes(np.expand_dims(input_image, axis=0)))
print("Predicted logits:", mymodel.predict(np.expand_dims(input_image, axis=0)))

结果输出:
在这里插入图片描述
观察结果:

尽管上面的图像被模型分类为数字3,但是由于它与数字5具有相似性,所以它也可以被分类为数字5。我们现在使用AIX360的CEMBexplainer来计算相关的正面和负面解释,这有助于我们理解为什么图像被模型分类为数字3而不是数字5。

获得相关否定(Pertinent Negative,PN)解释

arg_mode = "PN" # Find pertinent negative

arg_max_iter = 1000 # Maximum number of iterations to search for the optimal PN for given parameter settings
arg_init_const = 10.0 # Initial coefficient value for main loss term that encourages class change
arg_b = 9 # No. of updates to the coefficient of the main loss term

arg_kappa = 0.9 # Minimum confidence gap between the PNs (changed) class probability and original class' probability
arg_beta = 1.0 # Controls sparsity of the solution (L1 loss)
arg_gamma = 100 # Controls how much to adhere to a (optionally trained) autoencoder
arg_alpha = 0.01 # Penalizes L2 norm of the solution
arg_threshold = 0.05 # Automatically turn off features <= arg_threshold if arg_threshold < 1
arg_offset = 0.5 # the model assumes classifier trained on data normalized
                # in [-arg_offset, arg_offset] range, where arg_offset is 0 or 0.5


(adv_pn, delta_pn, info_pn) = explainer.explain_instance(np.expand_dims(input_image, axis=0), arg_mode, ae_model, arg_kappa, arg_b, 
                                            arg_max_iter, arg_init_const, arg_beta, arg_gamma, arg_alpha, arg_threshold, arg_offset)

结果输出:

WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\aix360\algorithms\contrastive\CEM_aen.py:60: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\aix360\algorithms\contrastive\CEM_aen.py:151: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.

WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\aix360\algorithms\contrastive\CEM_aen.py:213: The name tf.train.polynomial_decay is deprecated. Please use tf.compat.v1.train.polynomial_decay instead.

WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\tensorflow\python\keras\optimizer_v2\learning_rate_schedule.py:409: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\aix360\algorithms\contrastive\CEM_aen.py:216: The name tf.train.GradientDescentOptimizer is deprecated. Please use tf.compat.v1.train.GradientDescentOptimizer instead.

WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\tensorflow\python\ops\math_grad.py:1250: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From C:\Users\gxx\anaconda3\envs\tf-py37\lib\site-packages\aix360\algorithms\contrastive\CEM_aen.py:230: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

iter:0 const:[10.]
Loss_Overall:2737.2244, Loss_Attack:58.5389
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:500 const:[10.]
Loss_Overall:2737.2244, Loss_Attack:58.5389
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[100.]
Loss_Overall:3152.3984, Loss_Attack:0.0000
Loss_L2Dist:12.6054, Loss_L1Dist:16.5280, AE_loss:3123.264892578125
target_lab_score:9.0004, max_nontarget_lab_score:29.0375

iter:500 const:[100.]
Loss_Overall:2977.4854, Loss_Attack:0.0000
Loss_L2Dist:7.0313, Loss_L1Dist:10.1030, AE_loss:2960.35107421875
target_lab_score:9.2486, max_nontarget_lab_score:28.5018

iter:0 const:[55.]
Loss_Overall:2840.0422, Loss_Attack:0.0000
Loss_L2Dist:4.8674, Loss_L1Dist:7.2291, AE_loss:2827.94580078125
target_lab_score:9.7374, max_nontarget_lab_score:27.1471

iter:500 const:[55.]
Loss_Overall:2670.4844, Loss_Attack:0.0000
Loss_L2Dist:0.8409, Loss_L1Dist:2.1313, AE_loss:2667.51220703125
target_lab_score:15.5937, max_nontarget_lab_score:19.4013

iter:0 const:[32.5]
Loss_Overall:2644.0203, Loss_Attack:2.0429
Loss_L2Dist:0.5595, Loss_L1Dist:1.8527, AE_loss:2639.565185546875
target_lab_score:16.7141, max_nontarget_lab_score:17.5513

iter:500 const:[32.5]
Loss_Overall:2868.9368, Loss_Attack:190.2513
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[21.25]
Loss_Overall:2782.8979, Loss_Attack:117.1809
Loss_L2Dist:0.0176, Loss_L1Dist:0.2093, AE_loss:2665.490234375
target_lab_score:19.1928, max_nontarget_lab_score:14.5784

iter:500 const:[21.25]
Loss_Overall:2803.0806, Loss_Attack:124.3951
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[26.875]
Loss_Overall:2738.9089, Loss_Attack:91.5858
Loss_L2Dist:0.1530, Loss_L1Dist:0.9359, AE_loss:2646.234130859375
target_lab_score:18.1907, max_nontarget_lab_score:15.6829

iter:500 const:[26.875]
Loss_Overall:2836.0088, Loss_Attack:157.3232
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[24.0625]
Loss_Overall:2774.3594, Loss_Attack:117.5742
Loss_L2Dist:0.0524, Loss_L1Dist:0.4683, AE_loss:2656.2646484375
target_lab_score:18.8622, max_nontarget_lab_score:14.8760

iter:500 const:[24.0625]
Loss_Overall:2819.5447, Loss_Attack:140.8591
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[25.46875]
Loss_Overall:2754.6963, Loss_Attack:104.3005
Loss_L2Dist:0.0950, Loss_L1Dist:0.7232, AE_loss:2649.57763671875
target_lab_score:18.5058, max_nontarget_lab_score:15.3106

iter:500 const:[25.46875]
Loss_Overall:2827.7766, Loss_Attack:149.0911
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428

iter:0 const:[24.765625]
Loss_Overall:2762.2129, Loss_Attack:109.3322
Loss_L2Dist:0.0725, Loss_L1Dist:0.6168, AE_loss:2652.191650390625
target_lab_score:18.6550, max_nontarget_lab_score:15.1403

iter:500 const:[24.765625]
Loss_Overall:2823.6606, Loss_Attack:144.9751
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:2678.685546875
target_lab_score:19.3967, max_nontarget_lab_score:14.4428
print(info_pn)

结果输出:

[INFO]kappa:0.9, Orig class:3, Perturbed class:5, Delta class: 1, Orig prob:[[-11.279339    0.73625    -9.008647   19.396711   -8.286123   14.442826   -1.3170443 -11.587322   -0.992185    1.0182207]], Perturbed prob:[[ -6.6607647   -1.9869652   -7.4231925   13.461045    -6.341817   13.8300295    1.2803447  -11.60892      0.31489015   1.1112802 ]], Delta prob:[[-0.11039171  1.0537697  -0.0954444  -0.2623107  -0.3357536   0.24241148  -0.0948096  -0.00691785 -0.31975082 -0.56200165]]

获得相关的肯定(Pertinent Positive,PP)解释

arg_mode = "PP"  # Find pertinent positive
arg_beta = 0.1 # Controls sparsity of the solution (L1 loss)
(adv_pp, delta_pp, info_pp) = explainer.explain_instance(np.expand_dims(input_image, axis=0), arg_mode, ae_model, arg_kappa, arg_b, 
                                            arg_max_iter, arg_init_const, arg_beta, arg_gamma, arg_alpha, arg_threshold, arg_offset)

结果输出:


iter:0 const:[10.]
Loss_Overall:1186.7114, Loss_Attack:20.4772
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:500 const:[10.]
Loss_Overall:1186.7114, Loss_Attack:20.4772
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:0 const:[100.]
Loss_Overall:1374.8175, Loss_Attack:224.8764
Loss_L2Dist:0.0581, Loss_L1Dist:0.5667, AE_loss:1149.8262939453125
target_lab_score:-0.1908, max_nontarget_lab_score:1.1579

iter:500 const:[100.]
Loss_Overall:1177.7847, Loss_Attack:0.0000
Loss_L2Dist:9.0615, Loss_L1Dist:26.9499, AE_loss:1166.0281982421875
target_lab_score:9.1723, max_nontarget_lab_score:5.3354

iter:0 const:[55.]
Loss_Overall:1278.8588, Loss_Attack:112.6245
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:500 const:[55.]
Loss_Overall:1278.8588, Loss_Attack:112.6245
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:0 const:[77.5]
Loss_Overall:1324.9324, Loss_Attack:158.6981
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:500 const:[77.5]
Loss_Overall:1324.9324, Loss_Attack:158.6981
Loss_L2Dist:0.0000, Loss_L1Dist:0.0000, AE_loss:1166.2342529296875
target_lab_score:-0.1036, max_nontarget_lab_score:1.0441

iter:0 const:[88.75]
Loss_Overall:1347.3350, Loss_Attack:190.4548
Loss_L2Dist:0.0195, Loss_L1Dist:0.2384, AE_loss:1156.8367919921875
target_lab_score:-0.1378, max_nontarget_lab_score:1.1082

iter:500 const:[88.75]
Loss_Overall:1182.4167, Loss_Attack:0.0000
Loss_L2Dist:10.1261, Loss_L1Dist:29.5733, AE_loss:1169.3333740234375
target_lab_score:10.9503, max_nontarget_lab_score:8.5652

iter:0 const:[83.125]
Loss_Overall:1336.9946, Loss_Attack:176.8078
Loss_L2Dist:0.0096, Loss_L1Dist:0.1385, AE_loss:1160.1634521484375
target_lab_score:-0.1352, max_nontarget_lab_score:1.0918

iter:500 const:[83.125]
Loss_Overall:1177.7847, Loss_Attack:0.0000
Loss_L2Dist:9.0615, Loss_L1Dist:26.9499, AE_loss:1166.0281982421875
target_lab_score:9.1723, max_nontarget_lab_score:5.3355

iter:0 const:[80.3125]
Loss_Overall:1330.7108, Loss_Attack:169.8772
Loss_L2Dist:0.0070, Loss_L1Dist:0.1182, AE_loss:1160.8148193359375
target_lab_score:-0.1306, max_nontarget_lab_score:1.0846

iter:500 const:[80.3125]
Loss_Overall:1187.8037, Loss_Attack:0.0000
Loss_L2Dist:9.0935, Loss_L1Dist:26.5365, AE_loss:1176.0565185546875
target_lab_score:10.0619, max_nontarget_lab_score:2.9340

iter:0 const:[78.90625]
Loss_Overall:1327.5865, Loss_Attack:166.4040
Loss_L2Dist:0.0058, Loss_L1Dist:0.1080, AE_loss:1161.1658935546875
target_lab_score:-0.1282, max_nontarget_lab_score:1.0807

iter:500 const:[78.90625]
Loss_Overall:1176.6401, Loss_Attack:0.0000
Loss_L2Dist:8.3147, Loss_L1Dist:24.4263, AE_loss:1165.8828125
target_lab_score:8.1241, max_nontarget_lab_score:4.7113

iter:0 const:[78.203125]
Loss_Overall:1326.0416, Loss_Attack:164.6752
Loss_L2Dist:0.0053, Loss_L1Dist:0.1030, AE_loss:1161.350830078125
target_lab_score:-0.1270, max_nontarget_lab_score:1.0788

iter:500 const:[78.203125]
Loss_Overall:1180.0135, Loss_Attack:0.0000
Loss_L2Dist:9.0324, Loss_L1Dist:26.5381, AE_loss:1168.327392578125
target_lab_score:9.0967, max_nontarget_lab_score:5.0136
print(info_pp)

结果输出:

[INFO]kappa:0.9, Orig class:3, Perturbed class:3, Delta class: 3, Orig prob:[[-11.279339    0.73625    -9.008647   19.396711   -8.286123   14.442826   -1.3170443 -11.587322   -0.992185    1.0182207]], Perturbed prob:[[ -6.0453925   -0.16173983  -6.025815    11.575153    -3.0273986   11.318211     4.259432   -11.328725    -1.0278873   -2.3766122 ]], Delta prob:[[-2.3122752   0.60199463 -0.6148693   4.709517   -2.2623286   1.0073487  -2.2190797  -0.83646446 -1.5357832   0.9802128 ]]

相关负(PN)和相关正(PP)解释图

# rescale values from [-0.5, 0.5] to [0, 255] for plotting
fig0 = (input_image[:,:,0] + 0.5)*255

fig1 = (adv_pn[0,:,:,0] + 0.5) * 255
fig2 = (fig1 - fig0) #rescaled delta_pn
fig3 = (adv_pp[0,:,:,0] + 0.5) * 255
fig4 = (delta_pp[0,:,:,0] + 0.5) * 255 #rescaled delta_pp

f, axarr = plt.subplots(1, 5, figsize=(10,10))
axarr[0].set_title("Original" + "(" + str(mymodel.predict_classes(np.expand_dims(input_image, axis=0))[0]) + ")")
axarr[1].set_title("Original + PN" + "(" + str(mymodel.predict_classes(adv_pn)[0]) + ")")
axarr[2].set_title("PN")
axarr[3].set_title("Original + PP")
axarr[4].set_title("PP" + "(" + str(mymodel.predict_classes(delta_pp)[0]) + ")")

axarr[0].imshow(fig0, cmap="gray")
axarr[1].imshow(fig1, cmap="gray")
axarr[2].imshow(fig2, cmap="gray")
axarr[3].imshow(fig3, cmap="gray")
axarr[4].imshow(fig4, cmap="gray")
plt.show()

结果输出:
在这里插入图片描述
说明:

  • PP突出显示图像中存在的最小像素集,以便将其分类为数字3。注意,原始图像和PP都被分类器分类为数字3。
  • PN在顶部突出显示一条小水平线,该水平线的存在会将原始图像的分类改变为数字5,因此应该不存在,以便分类保持为数字3。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1035453.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【计算机网络笔记一】网络体系结构

IP和路由器概念 两台主机如何通信呢&#xff1f; 首先&#xff0c;主机的每个网卡都有一个全球唯一地址&#xff0c;MAC 地址&#xff0c;如 00:10:5A:70:33:61 查看 MAC 地址&#xff1a; windows: ipconfig / alllinux&#xff1a;ifconfig 或者 ip addr 同一个网络的多…

消息队列 记录

https://www.bilibili.com/video/BV1ia411k7oo/?p3&vd_source088e0f60c1207e991fcf231a9f1a0274

【@PostConstruct、 @Autowired与构造函数的执行顺序】

PostConstruct、 Autowired与构造函数的执行顺序 一、PostConstruct介绍二、Spring框架中在bean初始化和销毁时候执行实现方式三、项目验证1.MyServiceImpl2.测试结果3. 项目源码 最近对同事代码进行codeReview时候发现用PostConstruct注解&#xff0c;特地对此注解执行顺序进行…

【计算机基础】VScode基础操作大合集

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

重新认识Java中的死锁问题

一、定义 多个进程因抢夺系统资源而产生相互等待的现象。 二、场景模拟 package com.gui.practise.thread.deadlock;public class DeadLock {private final Object resource1 new Object();//资源 1 private final Object resource2 new Object();//资源 2 public v…

一、8086

1、三大总线&#xff1a; &#xff08;1&#xff09;基础&#xff1a; 地址总线、数据总线、控制总线 &#xff08;2&#xff09;例题&#xff1a; 2、8086CPU &#xff08;1&#xff09;通用寄存器&#xff1a; 数据寄存器&#xff1a; 指针寄存器和变址寄存器&#xff1a…

Goland设置头注释

package ${GO_PACKAGE_NAME} * Author: 坐公交也用券 * HomePage: https://liumou.site * File: ${NAME}.go * Date: ${DATE} ${TIME} * Des: 文件作用

elsarticle class not displaying email addresses

See https://tex.stackexchange.com/questions/84573/elsarticle-class-not-displaying-email-addresses

十一、DS18B20温度传感器

十一、DS18B20温度传感器 介绍单总线模块代码DS18B20模块代码温度读取主函数温度报警器主函数 介绍 单总线时序结构 初始化&#xff1a;主机将总线拉低至少480us&#xff0c;然后释放总线&#xff0c;等待15~ 60us后&#xff0c;存在的从机会拉低总线60~240us以相应主机&#x…

零基础学前端(六)HTML+CSS实战:模仿QQ官网首页

1. 我前面已经将HTML 和 CSS讲解完成&#xff0c;希望初学者是跟着一步一步敲代码走过来的。 2. 我个人觉得先不着急进入Javascript的学习&#xff0c;要将前面写样式&#xff0c;写布局的基础打好&#xff0c;所以我编写了本篇模仿QQ网站首页&#xff0c;请认真阅读。 一、确认…

AI-Chat,一款集全网ai功能的应用(附下载链接)

AI-Chat是一款综合性的聊天机器人&#xff0c;集成了多种先进的模型和功能。它采用了GPT4.0、联网版GPT和清华模型等多种模型&#xff0c;使得其具备更强大的语言处理能力。同时&#xff0c;AI-Chat还融合了AI绘画模型&#xff0c;例如Stable Diffusion绘画、文生图、图生图、艺…

力扣刷题-链表理论基础

什么是链表 什么是链表&#xff0c;链表是一种通过指针串联在一起的线性结构&#xff0c;每一个节点由两部分组成&#xff0c;一个是数据域一个是指针域&#xff08;存放指向下一个节点的指针&#xff09;&#xff0c;最后一个节点的指针域指向null&#xff08;空指针的意思&a…

FPGA:卷积编码及维特比译码仿真

FPGA&#xff1a;卷积编码及维特比译码仿真 本篇记录一下在FPGA中完成卷积编码和维特比译码的过程&#xff0c;通过代码解释编码的过程和译码的过程&#xff0c;便于理解&#xff0c;同时也方便移植到其他工程中。 1. 准备工作 卷积编译码IP核—convolutionIP核和viterbiIP核…

接口测试工具详解

首先&#xff0c;什么是接口呢&#xff1f; 接口一般来说有两种&#xff0c;一种是程序内部的接口&#xff0c;一种是系统对外的接口。 系统对外的接口&#xff1a;比如你要从别的网站或服务器上获取资源或信息&#xff0c;别人肯定不会把数据库共享给你&#xff0c;他只能给你…

k8s 自动扩缩容HPA原理及adapter配置详解

大家好&#xff0c;我是蓝胖子&#xff0c;都知道&#xff0c;k8s拥有自动扩缩容机制HPA&#xff0c;我们能够通过配置针对不同的扩缩容场景进行自动扩缩容&#xff0c;往往初学者在面对其中繁多配置的时候会学了又忘记&#xff0c;今天我将会以一种不同的视角&#xff0c;结合…

什么是单点登录?什么又是 OAuth2.0?

对于刚开始接触身份认证的朋友对于单点登录&#xff0c;OAuth2.0&#xff0c;JWT 等等会有诸多疑惑&#xff0c;甚至还会问既然有了 JWT 还拿 单点登录做什么&#xff1f;还拿 OAuth2.0 做什么&#xff1f; 不知做过身份认证的 xdm 看到这里是不是感觉这句话有点迷&#xff1f…

从Python代码到诗

&#x1f433;序言 在Python社区&#xff0c;没有强制的编码标准&#xff0c;这虽然赋予了开发者更多的自由&#xff0c;但也导致代码风格不一致性。使得部分代码变得晦涩难懂&#xff0c;本文将探讨一系列的开发技巧和最佳实践&#xff0c;开发出优雅的Python脚本。 1、参数接…

OpenMesh 网格平滑

文章目录 一、简介二、相关参数二、实现代码三、实现效果参考资料一、简介 由于物理采样过程固有的局限性,三维扫描仪获得的网格通常是有噪声的。为了消除这种噪声,所谓的平滑算法被开发出来。这类方法有很多,OpenMesh主要为我们提供了两种平滑算法,一种是较为经典的Laplac…

dp训练题解

训练链接 CF101E 题目链接 点击打开链接 题目解法 朴素的 d p dp dp 很好写&#xff0c;但发现难以得到最优路径 考虑对于 ( x , y ) (x,y) (x,y) 的转移方式只有两种&#xff0c;可以想到用 b i t s e t bitset bitset 来维护转移&#xff0c;这样可以很节约空间 但我…

113双周赛

题目列表 2855. 使数组成为递增数组的最少右移次数 2856. 删除数对后的最小数组长度 2857. 统计距离为 k 的点对 2858. 可以到达每一个节点的最少边反转次数 一、使数组成为递增数组的最少右移次数 这题可以直接暴力求解&#xff0c;枚举出每种右移后的数组&#xff0c;将…