【云原生】k8s的pod基础

news2025/2/4 10:48:23

内容预知

 1.pod的相关知识

1.1 pod的基础概念 

1.2 k8s中pod的两种使用方式 

 1.3 pod 容器的常规使用流程 

1.4 k8s中pod结构设计的巧妙用意

通常把Pod分为两类

2. 容器的分类

 2.1  pause基础容器(infrastructure container)

(1)查看pause容器的基础镜像

(2)配置kubelet使用阿里云的镜像

pause容器的作用 

2.2 init初始化容器

2.2 init容器和普通容器的区别 

2.3 Init 容器的使用 

运行特例

2.4 应用容器(业务容器,Maincontainer) 

 3. 模拟演练


 1.pod的相关知识

1.1 pod的基础概念 

pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是用绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理eod运行的StatefulSet和Deploment等控制器对象,用于暴露pod应用的service和Ingress对象,为pod提供存储的persistentVolme存储资源对象等。  

1.2 k8s中pod的两种使用方式 

 (1)一个pod中运行一个容器。"每个po中一个容器"的模式是最常见的用法:在这种使用方式中,你可以把pod想象成是单个容器的封装,kterentes管理的是Pod而不是直接管理容器。

(2)在一个Pod中同时运行多个容器。一个Pod中也可以同时封装几个需要紧密耦合互相协作的容器,它们之间共享资源。这些在同一个Pod中的容器可以互相协作成为一个servie单位,比如一个容器共享文件,另一个"sidecar"容器(边车容器)来更新这些文件。Pod将这些突器的存储资源作为一个实体来管理 

 1.3 pod 容器的常规使用流程 

一个Pod下的容器必须运行于同一节点上。现代容器技术建议一个容器只运行一该进程在容器中PID命令空间中的进程号为1,可直接接收并处理信号,进程终止时容个讲程,器生命固期也就结束了。若想在容器内运行多个进程,需要有一个类似Linux操作系统1进程的管控类进程,以树状结构完成多进程的生命周期管理。

运行于各自容器内的进程无法直接完成网络通信,这是由于容器间的隔离机制导致,k8s中的Pod资源抽象正是解决此类问题,Pod对象是一组容器的集合,这些容器其享Network、0TS及IPC命令间,因此具有相同的域名、主机名和网络接口,并可通过IPC直接通信。 

Pod资源中针对各容器提供网络命令空间等共享机制的是底层基础容器pause,基础容器( 也可称为父容器) pause就是为了管理Pod容器间的共享操作,这个父容器需要能够准确地知道如何去创建共享运行环境的容器,还能管理这些容器的生命周期。为了实现这个父容器的构想,kubernetes中,用pause容器来作为一个Pod中所有容器的父容器。这个pause容器有两个核心的功能,是它提供整个Pod的Linux命名空间的基础。二来启用PID命名空间,它在每个Pod中都作为PID为1进程(init进程),并回收僵尸进程。
 

1.4 k8s中pod结构设计的巧妙用意

(1)在一组容器作为一个单元的情况下,难以对整体的容器简单地进行判断及有效地进行行动。比如,一个容器死亡了,此时是算整体挂了么?那么引入与业务无关的Pause容器作为Pod的基础容器,以它的状态代表着整个容器组的状态,这样就可以解决该问题。


(2)Pod里的多个应用容器共享Pause容器的IP,共享Pause容器挂载的Volume,这样简化了应用容器之间的通信问题,也解决了容器之间的文件共享问题。
 

通常把Pod分为两类


●自主式Pod

这种Pod本身是不能自我修复的,当Pod被创建后 (不论是你直接创建还是被其他的Controller),都会kuberentes调度到集群的node上。直到node的进程终止、被删掉、因为缺少资源资源而被驱逐、或者node节点故障之前都会一直保持在那个node上。pod不会自愈。如果pod运行时,所在的node节点 故障,或者是调度器本身故障,这个pod就会被删除。同样的,如果Pod所在Node缺少资源或者Pod处于维护状态,Pod也会被驱逐。

●控制器管理的Pod 

Kubernetes使用更高级的概为controller的抽象层,来管理eod实例。controller可以创建和管理多个pod,提供副本管理、滚动升级和集群级别的自愈能力。例如,如果一个Node故障,Controller就能自动将该节点上的Pod调度到其他健康的node上。虽然可以直接使用Pod,但是在Kubernetes中通常是使用controller来管理Pod的。
 

2. 容器的分类

 2.1  pause基础容器(infrastructure container)

  • 维护整个Pod网络和存储空间
  • 启动一个容器时,k8s会自动启动一个基础容器

 

(1)查看pause容器的基础镜像

 

docker images

 

(2)配置kubelet使用阿里云的镜像

#查看pause配置镜像文件
cat /etc/sysconfig/kubelet

 

 

 

#配置修改为阿里的官方pause镜像源
cat > /etc/sysconfig/kubelet << EOF

KUBELET_EXTRA_ARGS=--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
EOF

 

pause容器的作用 

  • 在pod中担任Linux命名空间( 如网络命令空间)共享的基础
  • 启用PID命名空间,开启init进程。

网络:
每个Pod都会被分配一个唯一的IP地址。Pod中的所 有容器共享网络空间,包括IP地址和端口。Pod内 部的容器可以使用localhost互相通信。Pod中的容器与外界通信时,必须分配共享网络资源(例如使用宿主机的端口映射)

存储:
可以Pod指定多个共享的Volume. Pod中 的所有容器都可以访问共享的Volume,Volume 也可以用来持久化Pod中的存储资源,以防容器重启后文件丢失。

 

总结:
每个Pod都有一个特殊的被称为“基础容器"的Pause容器。Pause 容器对应的镜像属于Kubernetes平台的- - 部分,除了Pause容器,每个Pod还包含一个或者多个紧密相关的用户应用容器。 

 


 

2.2 init初始化容器

每个 pod中可以包含多个容器, 应用运行在这些容器里面,同时 Pod 也可以有一个或多个先于应用容器启动的 Init 容器。

Init 容器与普通的容器非常像,除了如下两点:

  • 它们总是运行到完成。
  • 每个都必须在下一个启动之前成功完成。

如果 Pod 的 Init 容器失败,kubelet 会不断地重启该 Init 容器直到该容器成功为止。 然而,如果 Pod 对应的 restartPolicy 值为 "Never",并且 Pod 的 Init 容器失败, 则 Kubernetes 会将整个 Pod 状态设置为失败。

为 Pod 设置 Init 容器需要在pod规则中添加 initContainers 字段, 该字段以 container类型对象数组的形式组织,和应用的 containers 数组同级相邻。 参阅 API 参考的容器章节了解详情。

Init 容器的状态在 status.initContainerStatuses 字段中以容器状态数组的格式返回 (类似 status.containerStatuses 字段)。

2.2 init容器和普通容器的区别 

Init 容器支持应用容器的全部字段和特性,包括资源限制、数据卷和安全设置。 然而,Init 容器对资源请求和限制的处理稍有不同,在下面资源节有说明。

同时 Init 容器不支持 lifecyclelivenessProbereadinessProbe 和 startupProbe, 因为它们必须在 Pod 就绪之前运行完成。

如果为一个 Pod 指定了多个 Init 容器,这些容器会按顺序逐个运行。 每个 Init 容器必须运行成功,下一个才能够运行。当所有的 Init 容器运行完成时, Kubernetes 才会为 Pod 初始化应用容器并像平常一样运行。

 

 

2.3 Init 容器的使用 

因为 Init 容器具有与应用容器分离的单独镜像,其启动相关代码具有如下优势:

  • Init 容器可以包含一些安装过程中应用容器中不存在的实用工具或个性化代码。 例如,没有必要仅为了在安装过程中使用类似 sedawkpython 或 dig 这样的工具而去 FROM 一个镜像来生成一个新的镜像。

  • 应用镜像的创建者和部署者可以各自独立工作,而没有必要联合构建一个单独的应用镜像。

  • 与同一 Pod 中的多个应用容器相比,Init 容器能以不同的文件系统视图运行。因此,Init 容器可以被赋予访问应用容器不能访问的 Secret的权限。

  • 由于 Init 容器必须在应用容器启动之前运行完成,因此 Init 容器提供了一种机制来阻塞或延迟应用容器的启动,直到满足了一组先决条件。 一旦前置条件满足,Pod 内的所有的应用容器会并行启动。

  • Init 容器可以安全地运行实用程序或自定义代码,而在其他方式下运行这些实用程序或自定义代码可能会降低应用容器镜像的安全性。 通过将不必要的工具分开,你可以限制应用容器镜像的被攻击范围

 

运行特例

  • 在Pod启动过程中,Init容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出。
  • 如果由于运行时或失败退出,将导致容器启动失败,它会根据Podl的restartPolicy指定的策略(该策略又分为 Always , Never ,OnFailure)进行重试。然而,如果Pod的restartPolicy设置为Always,Init容器失败时会使用RestartPolicy策略。
  • 在所有的Init容器没有成功之前,Pod将不会变成Ready状态。Init容器的端口将不会在service中进行聚集。正在初始化中的Pod处于Pending状态,但应该会将Initializing状态设置为true。
  • 如果Pod重启,所有Init容器必须重新执行。
  • 对Init容器spec的修改被限制在容器image字段,修改其他字段都不会生效。更改Init容器的image字段,等价于重启该Pod。
  • Init容器具有应用容器的所有字段。除了readinessProbe,因为Tnit容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行。
  • 在Pod中的每个app和Init容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误.
     

2.4 应用容器(业务容器,Maincontainer) 

 提供业务服务,它是并行启动,要在所以Init容器成功的完成启动、运行和退出后才会启动应用容器

 

 

 

 

 3. 模拟演练

 官网模板地址:Init 容器 | Kubernetes

 

 编写业务容器加初始化容器的demo:

vim nginx_init.yaml 
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  namespace: default
spec:
  containers:
  - image: nginx:1.41
    name: nginx
    ports:
    - containerPort: 80
      protocol: TCP
  initContainers:
  - name: init-test1
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup test1 ; do echo waiting is for  test1 && sleep 5 ; done " ]
  - name: init-test2
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup test2 ; do echo waiting is for  test2 && sleep 5 ; done " ]



kubectl apply -f nginx_init.yaml 

 

 

 

 

 

 进行声明式资源编写:

 

apiVersion: v1
kind: Service
metadata:
  name: test1
  namespace: default
  labels:
    app: nginx
spec:
  ports:
  - port: 80
  selector:
    app: nginx

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/103477.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安装ZIMG 图片服务器

简介&#xff1a;zimg是图像存储和处理服务器。您可以使用URL参数从zimg获取压缩和缩放的图像。 zimg的并发I / O&#xff0c;分布式存储和时间处理能力非常出色。 您不再需要在图像服务器中使用nginx。在基准测试中&#xff0c;zimg可以在高并发级别上处理每秒3000图像下载任务…

【性能篇】29 # 怎么给Canvas绘制加速?

说明 【跟月影学可视化】学习笔记。 方法一&#xff1a;优化 Canvas 指令 例子&#xff1a;实现一些位置随机的多边形&#xff0c;并且不断刷新这些图形的形状和位置 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"…

openGauss的WDR报告解读

文章目录1.执行以下SQL命令,查询已经生成的快照信息。2.生成WDR报告。3.手工创建快照信息4.WDR涉及的数据表5.WDR报告解读在Oralce数据库中&#xff0c;遇到性能问题&#xff0c;我们通常会查看有无对应时间段的快照&#xff0c;生成awr报告并进一步分析&#xff08;AWR是Autom…

海量数据小内存!只出现两次的数以及中位数怎么找

文章目录题目一题目二实际上类似的题目类似的解法在之前已经有介绍过海量数据小内存&#xff01;如何找到高频数 海量数据小内存&#xff01;从未出现过的数在哪里 题目一 如何在 40 亿个无符号整数中找到出现次数只有两次的那些数&#xff0c;在只提供 1 G 内存的条件下 解…

Map集合概述、API 遍历方式(键值对集合)

注意&#xff1a; Map集合和Collection集合是两个不同类型的集合 Map集合体系特点&#xff1a; 常用API&#xff1a; 根据键找出值&#xff1a; map.get(key); 取所有键的集合和取所有值得集合&#xff1a; 因为key是无序不重复无索引&#xff0c;所以放入set集合&#xff…

锂电池电压和电量的关系

锂电池电压和电量之间,有一定的对应关系,通过对开路电压的测量,可以大致得出电池的剩余电量。不过用电压测量电量的方式有一定的不稳定性,例如放电电流、环境温度、循环、放电平台、电极材料等,都会给最后结果的准确与否带来影响。 电压和电量的对应关系是: 100%----4.…

【算法】常用查找算法(顺序查找、二分查找、插值查找、斐波那契查找)

目录查找算法1.线性(顺序)查找(1)思路(2)代码实现(java)2.二分(折半)查找(1)思路(2)代码实现(java)3.插值查找(1)思路(2)代码实现(java)4.斐波那契(黄金分割法)查找(1)思路(2)代码实现(java)查找算法 1.线性(顺序)查找 (1)思路 判断序列中是否包含某个元素&#xff0c;找到提…

Vue3引入Lottie动画以及遇到的坑

之所以写这个问题是因为原本我认为非常小的一件事却困扰了我一整天&#xff0c;所以我打算写一个博客记录一番。 国外动画网址&#xff1a;Lottie 将来用到的lottie组件库网址&#xff1a; Vue3-lottie 我目前用的第二个&#xff1a; Vue3-lottiejs 1. 我在引入Lottie的时…

【Python机器学习】决策树与随机森林的讲解及决策树在决策决策问题中实战(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~ 在生活中人们经常应用决策树的思想来做决定 分类的建模过程与上面做决定的过程相反&#xff0c;事先不知道人们的决策思路&#xff0c;需要通过人们已经做出的大量决定来“揣摩”出其决策思路&#xff0c;也就是通过大量数据来归纳道…

嵌入式分享合集124

一、19个常用的5V转3.3V技巧 01 使用LDO稳压器 标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V&#xff0c;就不能使用它们。压差为几百个毫伏的低压降 &#xff08;Low Dropout&#xff0c; LDO&#xff09;稳压器&#xff0c;是此类应用的理想选择。图…

常见的CSS布局方法

常见的CSS布局方法 「1. 单栏布局」 常见的单列布局有两种: header,content 和 footer 等宽的单列布局header 与 footer 等宽,content 略窄的单列布局header,content 和 footer 等宽的单列布局 ​ 先通过对 header,content,footer 统一设置 width:1000px;或者 max-width:1…

DHCP报文

一. 介绍 DHCP&#xff08;Dynamic Host Configuration Protocol&#xff0c;动态主机配置协议&#xff09;是一个局域网的网络协议&#xff0c;使用UDP协议工作&#xff0c;统一使用两个IANA分配的端口&#xff1a;67&#xff08;服务器端&#xff09;&#xff0c;68&#xff…

Django学习Day5

由于前两天核酸阳的&#xff0c;一直发烧&#xff0c;故没有学习&#xff0c;csdn也没有进行更新。今天身体基本恢复&#xff0c;继续Django的学习旅程。也希望各位读者重视个人的身体健康&#xff0c;做好自己健康的第一负责人。 1.关于针对模型类的数据库修改方法补充 在mo…

二苯基环辛炔-氨基;DBCO-NH2科研实验用试剂DBCO-Amine;CAS:1255942-06-3

英文名称&#xff1a;DBCO-Amine DBCO-NH2 中文名称&#xff1a;二苯基环辛炔-氨基 CAS&#xff1a;1255942-06-3 分子式&#xff1a;C18H16N2 分子量&#xff1a;276.3 外观&#xff1a;固体粉末 溶剂&#xff1a;溶于 DMSO, DMF, DCM, THF, Chloroform 储存条件&…

什么是容器安全性,您如何提升自己的安全性?

容器无疑已成为部署应用程序的流行方式。这很棒&#xff0c;因为与部署到虚拟机相比&#xff0c;它们具有大量优势。其中一些优点包括便携、不可变和轻量级。您可以控制运行服务的容器内部的内容&#xff0c;这可以产生清晰、可审计的跟踪。 对于安全专业人员来说&#xff0c;…

模型复杂度与硬件性能的衡量

1. 模型复杂度的衡量 参数数量&#xff08;Params&#xff09;&#xff1a;指模型含有多少参数&#xff0c;直接决定模型的大小&#xff0c;也影响推断时对内存的占用量 单位通常为 M&#xff0c;通常参数用 float32 表示&#xff0c;所以模型大小是参数数量的 4 倍左右参数数…

数据结构C语言版 —— 树和二叉树的概念

树和二叉树 一、树 1. 树的概念 树(Tree)是n(n>0)n(n>0)n(n>0)个节点的有限集&#xff0c;在任意一颗非空树中&#xff1a; (1) 有且仅有一个特定的称为根(Root)的节点&#xff0c;根节点是没有前驱节点的。 &#xff08;2&#xff09;当 n>1n > 1n>1时…

_11LeetCode代码随想录算法训练营第十一天-C++队列的应用

_11LeetCode代码随想录算法训练营第十一天-C队列的应用 239.滑动窗口最大值347.前K个高频元素 239.滑动窗口最大值 整体思路 要实现一个单调递减队列&#xff1a; 对于滑动窗口的滑动&#xff0c;移除前面的元素&#xff0c;加入后面的元素。当移除前面的元素时&#xff0…

监控物联网卡该如何选择,你都踩过哪些坑?

不知道大家有没有发现在自己的身边不知不觉多了很多新玩意&#xff0c;例如智能自动售货机、共享单车、智能监控设备等&#xff0c;它们让大家的生活变得越来越方便&#xff0c;那么大家知道它们为什么能起到这么大的作用吗&#xff0c;其实得得益于一个叫做物联网卡的东西。前…

通过kubeode安装k8s

文章目录通过kubeode安装k8s1、准备vmdk文件2、创建虚拟机3、进入虚拟机4、配置yum源5、清理6、 增加node服务器7、修改Ip8、下载下载通道01 走普通家庭宽带下载点下载通道02 走群友无私赞助电信机房专线服务器--高速稳定下载----强烈推荐下载并解压9、一键安装通过kubeode安装…