本篇概要
本篇主要讲述C语言结构体的相关知识,包括结构体的基本声明,结构体的匿名结构,结构体的自引用,结构体变量的定义和初始化以及结构体的内存对齐等相关知识。
文章目录
- 本篇概要
- 1.结构体
- 1.1结构体的基本声明
- 1.2结构体的特殊声明(匿名结构体类型)
- 1.3结构体的自引用
- 1.4结构体变量的定义和初始化
- 1.5结构体内存对齐
- 1.6结构体传参
1.结构体
1.1结构体的基本声明
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
结构体的基本用法如下:
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
当然,我在这里还有一些补充
struct student
{
}s1,s2,s3;//这s1,s2,s3是三个结构体变量
int main()
{
struct student s4,s5,s6;//s4,s5,s6是三个结构体变量
return 0;
}
需要说明的是s1,s2,s3是全局变量,s4,s5,s6是局部变量。
1.2结构体的特殊声明(匿名结构体类型)
struct
{
char neme[20];
int age;
char sex[5];//一个汉字2个字符
float score;
}s1,s2;
↑如上代码所示,可以去掉结构体的名字 匿名结构体类型,但只能用一次,后面再想定义变量不可以(只可以使用s1和s2)
struct
{
char neme[20];
int age;
char sex[5];//一个汉字2个字符
float score;
}b;
struct
{
char neme[20];
int age;
char sex[5];//一个汉字2个字符
float score;
}*p;
int main()
{
p=&b;
return 0;
}
↑这里,两个结构体类型完全一样,但是p=&b这样是有问题的,虽然结构体类型,成员完全一样,但在编译器看来,这依然是两种结构体类型,编译器认为p和&b是不一样的。
1.3结构体的自引用
即在结构中包含一个类型为该结构本身的成员
自引用错误用法:
struct Node
{
int data;
struct Node n;
};
int main()
{
printf("%d",sizeof(struct Node));
return 0;
}
提示:这么使用编译器会报警,运行不成功。因为struct中有一个整形为4字节,后面有一个结构体,那么是4+n,那么n中又是4+n,算不了。
自引用的正确用法:
struct Node
{
int data;
struct Node* n;
};
int main()
{
printf("%d",sizeof(struct Node));
return 0;
}
此时,代码可以运行,用指针的话,指针存放下一个节点的地址,指针本身的大小也是固定的,所以可以计算出来。
1.4结构体变量的定义和初始化
下面列举几种结构体的定义:
struct Point
{
int x;
int y;
}p1 = {1,2};
struct Point p3 = {4,5};
int main()
{
int a = 10;
int b = 20;
struct Point p2 = {a, b};
return 0;
}
结构体可以这么定义
struct Stu
{
char name[15];//名字
int age;
};
struct Stu s = { "zhangsan", 20 };
struct Stu s2 = { .age=18, .name="如花"};
int main()
{
printf("%s %d\n", s.name, s.age);
printf("%s %d\n", s2.name, s2.age);
}
也可以这么定义
struct Node
{
int data;
struct Point p;
struct Node* next;
};
int main()
{
struct Node n = { 100, {20, 21}, NULL };
printf("%d x=%d y=%d\n", n.data, n.p.x, n.p.y);
}
更加复杂,也还可以这么定义,嵌套结构体。
1.5结构体内存对齐
我们先来看以下的代码:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
int main()
{
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
return 0;
}
提示:我们可以看到两个一摸一样的结构体,计算出来的大小,却不一样,这是什么导致的呢?
就是结构体的内存对齐导致的。
下来给大家介绍一个宏 offsetof,其头文件为<stddef.h>
它可以计算结构体成员相较于起始位置的偏移量
我们在上面代码的main函数加上以下代码:
int main()
{
printf("%d\n", offsetof(struct S1, c1));
printf("%d\n", offsetof(struct S1, c2));
printf("%d\n", offsetof(struct S1, i));
//printf("%d\n", sizeof(struct S1));
//printf("%d\n", sizeof(struct S2));
return 0;
}
我们可以看到offsetof计算出来的结果为0,4,8,上面的示意图对应的就是struct内存的结构,灰色为char c1,蓝色为int i,橙色为char c2,红色的取余浪费了。
使用同样的操作,我们可以得出struct的结构示意图。
c1,c2,i都已在图中标注出来,红色为浪费部分。
提示:但是为什么要这个样子呢?为什么要内存对齐?
首先得掌握结构体的对齐规则:
- 第一个成员在与结构体变量偏移量为0的地址处存储。
- 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8- 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
- 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的成员中最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍
例如struct s2
char c1偏移量为0 ,直接占第一个字节
char c2 偏移量为min{1,8}
int i 偏移量为min{4,8}
此结构体最大对齐数位4,根据规则三结构体总大小取4的整数倍,即8.再例如struct s1
char c1偏移量位0,直接占第一个字节
int i偏移量位min{4,8},从第四个字节开始占4个字节
char c2,偏移量为1的倍数,直接放在i后面
这是一共占了9个字节,最大对齐数为4,结构体大小应为4的倍数,故为12.
接下来就来说一说为什么要对齐!
- 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。
- 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
结构体的内存对齐是拿空间来换取时间的做法。
对于第二点如下:
提示:在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 让占用空间小的成员尽量集中在一起。
例如struct s2就比struct s1所占空间小!!
上面讲到VS的默认对齐数为8,我们也可以更改它
pragma pack(5) //设置默认对齐数为5
pragma pack() //取消设置的默认对齐数,还原为默认
1.6结构体传参
代码使用了结构体传值调用和传址调用两种方法:
struct S
{
int data[1000];
int num;
};
void print1(struct S t)
{
printf("%d %d %d %d\n", t.data[0], t.data[1], t.data[2], t.num);
}
void print2(const struct S * ps)
{
printf("%d %d %d %d\n", ps->data[0], ps->data[1], ps->data[2], ps->num);
}
int main()
{
struct S s = { {1,2,3}, 100 };
print1(s);//传值调用
print2(&s);//传址调用
return 0;
}
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。所以我们优先使用传址调用。