C语言自定义类型详解(1)结构体知识汇总

news2024/10/7 4:29:07

本篇概要

本篇主要讲述C语言结构体的相关知识,包括结构体的基本声明,结构体的匿名结构,结构体的自引用,结构体变量的定义和初始化以及结构体的内存对齐等相关知识。

文章目录

  • 本篇概要
  • 1.结构体
    • 1.1结构体的基本声明
    • 1.2结构体的特殊声明(匿名结构体类型)
    • 1.3结构体的自引用
    • 1.4结构体变量的定义和初始化
    • 1.5结构体内存对齐
    • 1.6结构体传参


1.结构体

1.1结构体的基本声明

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

结构体的基本用法如下:

struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢

当然,我在这里还有一些补充

struct student
{
}s1,s2,s3;//这s1,s2,s3是三个结构体变量

int main()
{
struct student s4,s5,s6;//s4,s5,s6是三个结构体变量
return 0;
}

需要说明的是s1,s2,s3是全局变量,s4,s5,s6是局部变量。

1.2结构体的特殊声明(匿名结构体类型)

struct 
{
	char neme[20];
	int age;
	char sex[5];//一个汉字2个字符
	float score;
}s1,s2;

↑如上代码所示,可以去掉结构体的名字 匿名结构体类型,但只能用一次,后面再想定义变量不可以(只可以使用s1和s2)

struct 
{
	char neme[20];
	int age;
	char sex[5];//一个汉字2个字符
	float score;
}b;

struct 
{
	char neme[20];
	int age;
	char sex[5];//一个汉字2个字符
	float score;
}*p;

int main()
{
p=&b;
return 0;
}

↑这里,两个结构体类型完全一样,但是p=&b这样是有问题的,虽然结构体类型,成员完全一样,但在编译器看来,这依然是两种结构体类型,编译器认为p和&b是不一样的。

1.3结构体的自引用

即在结构中包含一个类型为该结构本身的成员

自引用错误用法:

struct Node
{
int data;
struct Node n;
};

int main()
{
printf("%d",sizeof(struct Node));
return 0;
}

提示:这么使用编译器会报警,运行不成功。因为struct中有一个整形为4字节,后面有一个结构体,那么是4+n,那么n中又是4+n,算不了。

自引用的正确用法:

struct Node
{
int data;
struct Node* n;
};
int main()
{
printf("%d",sizeof(struct Node));
return 0;
}

此时,代码可以运行,用指针的话,指针存放下一个节点的地址,指针本身的大小也是固定的,所以可以计算出来。

1.4结构体变量的定义和初始化

下面列举几种结构体的定义:

struct Point
{
	int x;
	int y;
}p1 = {1,2};

struct Point p3 = {4,5};

int main()
{
	int a = 10;
	int b = 20;
	struct Point p2 = {a, b};
	return 0;
}

结构体可以这么定义

struct Stu
{
	char name[15];//名字
	int age;
};
struct Stu s = { "zhangsan", 20 };
struct Stu s2 = { .age=18, .name="如花"};

int main()
{
printf("%s %d\n", s.name, s.age);
printf("%s %d\n", s2.name, s2.age);
}

也可以这么定义

struct Node
{
	int data;
	struct Point p;
	struct Node* next;
};
int main()
{
struct Node n = { 100, {20, 21}, NULL };
printf("%d x=%d y=%d\n", n.data, n.p.x, n.p.y);
}

更加复杂,也还可以这么定义,嵌套结构体。

1.5结构体内存对齐

我们先来看以下的代码:

struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	char c1;
	char c2;
	int i;
};

int main()
{
	printf("%d\n", sizeof(struct S1));
	printf("%d\n", sizeof(struct S2));
	return 0;
}

在这里插入图片描述
提示:我们可以看到两个一摸一样的结构体,计算出来的大小,却不一样,这是什么导致的呢?

就是结构体的内存对齐导致的。

下来给大家介绍一个宏 offsetof,其头文件为<stddef.h>
它可以计算结构体成员相较于起始位置的偏移量

我们在上面代码的main函数加上以下代码:

	int main()
{
	printf("%d\n", offsetof(struct S1, c1));
	printf("%d\n", offsetof(struct S1, c2));
	printf("%d\n", offsetof(struct S1, i));
	//printf("%d\n", sizeof(struct S1));
	//printf("%d\n", sizeof(struct S2));
	return 0;
}

在这里插入图片描述
在这里插入图片描述

我们可以看到offsetof计算出来的结果为0,4,8,上面的示意图对应的就是struct内存的结构,灰色为char c1,蓝色为int i,橙色为char c2,红色的取余浪费了。

使用同样的操作,我们可以得出struct的结构示意图。
在这里插入图片描述

c1,c2,i都已在图中标注出来,红色为浪费部分。

提示:但是为什么要这个样子呢?为什么要内存对齐?

首先得掌握结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处存储。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
    VS中默认的值为8
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的成员中最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

例如struct s2
char c1偏移量为0 ,直接占第一个字节
char c2 偏移量为min{1,8}
int i 偏移量为min{4,8}
此结构体最大对齐数位4,根据规则三结构体总大小取4的整数倍,即8.

再例如struct s1
char c1偏移量位0,直接占第一个字节
int i偏移量位min{4,8},从第四个字节开始占4个字节
char c2,偏移量为1的倍数,直接放在i后面
这是一共占了9个字节,最大对齐数为4,结构体大小应为4的倍数,故为12.

接下来就来说一说为什么要对齐!

  1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。
  2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

结构体的内存对齐是拿空间来换取时间的做法。

对于第二点如下:
在这里插入图片描述

提示:在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 让占用空间小的成员尽量集中在一起。
例如struct s2就比struct s1所占空间小!!

上面讲到VS的默认对齐数为8,我们也可以更改它
pragma pack(5) //设置默认对齐数为5
pragma pack() //取消设置的默认对齐数,还原为默认

1.6结构体传参

代码使用了结构体传值调用和传址调用两种方法:

struct S
{
	int data[1000];
	int num;
};

void print1(struct S t)
{
	printf("%d %d %d %d\n", t.data[0], t.data[1], t.data[2], t.num);
}

void print2(const struct S * ps)
{
	printf("%d %d %d %d\n", ps->data[0], ps->data[1], ps->data[2], ps->num);
}

int main() 
{
	struct S s = { {1,2,3}, 100 };
	print1(s);//传值调用
	print2(&s);//传址调用

	return 0;
}

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。所以我们优先使用传址调用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1033837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

应用程序转换工具Unite mac中文版软件特点

Unite mac是一款Mac平台上的应用程序转换工具&#xff0c;它可以将任何网站或Web应用程序转换成本地应用程序&#xff0c;以便更方便地访问和使用。 Unite mac软件特点 网站转应用程序&#xff1a;该软件可以将任何网站或Web应用程序转换成本地应用程序&#xff0c;方便用户更…

AI创作工具-AI创作工具技术解读

创作是广告、文章、小说、社交媒体内容等各个领域的关键&#xff0c;但它通常需要创作者花费大量时间和精力&#xff0c;思考、编写和编辑内容。有时候&#xff0c;创作者可能面临写作灵感枯竭、时间紧迫或需要大量内容的情况。 添加图片注释&#xff0c;不超过 140 字&#xf…

Java集合--Collection、Map、List、Set、Iterator、Collections工具类

文章目录 一、Java集合框架概述二、Collection接口方法2.1、Collection子接口一&#xff1a;List2.1.1、ArrayLIst的源码分析2.1.2、LinkedList的源码分析2.1.3、List接口中的常用方法 2.2、Collection子接口二&#xff1a;Set2.2.1、Set接口的无序性2.2.2、添加元素的过程&…

Leetcode---363周赛

题目列表 2859. 计算 K 置位下标对应元素的和 2860. 让所有学生保持开心的分组方法数 2861. 最大合金数 2862. 完全子集的最大元素和 一、计算k置为下标对应元素的和 简单题&#xff0c;直接暴力模拟&#xff0c;代码如下 class Solution { public:int sumIndicesWithKS…

从零开始学习CTF,看完不信你学不会!

一、CTF简介 简介 中文一般译作夺旗赛&#xff08;对大部分新手也可以叫签到赛&#xff09;&#xff0c;在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式 CTF起源于1996年DEFCON全球黑客大会&#xff0c;以代替之前黑客们通过互相发起真实攻击进行技术…

Linux——文件系统

✅<1>主页&#xff1a;&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;Linux——文件系统 ☂️<3>开发环境&#xff1a;Centos7 &#x1f4ac;<4>前言&#xff1a;上期我们了解了文件在内存中得组织方式&#xff0c;那么文件在磁盘中…

ElasticSerach+MongoDB:实现文章检索历史功能

实现目标&#xff1a; 展示用户的搜索记录10条&#xff0c;按照搜索关键词的时间倒序可以删除搜索记录保存历史记录&#xff0c;保存10条&#xff0c;多余的则删除最久的历史记录 数据库的选择&#xff1a; 用户的搜索记录&#xff0c;需要给每一个用户都保存一份&#xff0c;数…

第3讲:vue路由安装配置,带参路由,子路由配置及应用

路由的安装与基本使用 vue-router是Vue官方的路由插件,它和Vue是深度集成,适用于构建单页面应用 vue-router的安装 //vue2路由配置npm install vue-router@3.0.2 或 cnpm install vue-router@3.0.2在具体应用的开发中我们一般会在src目录下新建一个名为router的目录,并在r…

加速乐源码(golang版本)

一、分析 分析过程网上有很多,这里只说个大概,主要是提供golang源码 请求网站,发现前两次请求都会返回521,第三次请求成功,说明前两次请求肯定是干了什么事情;使用接口请求工具模拟请求分析该过程 使用postman工具请求 a. 第一次请求会在响应头返回jsluid,返回内容中拼接…

滚动轴承 调心球轴承 外形尺寸

声明 本文是学习GB-T 281-2013 滚动轴承 调心球轴承 外形尺寸. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了符合 GB/T 273.3—1999 的调心球轴承及带紧定套的调心球轴承(以下简称轴承)的 外形尺寸。 本标准适用于调心球轴承…

【数字IC/FPGA】基于握手的数据广播

简介 本文介绍了一种基于握手协议的数据广播方式。事实上,该场景可以简化为模块的一对多握手,并且下游的各个模块可以独立的完成握手(与之相对的是下游模块一起完成握手,相比之下,下游各个模块可以独立完成握手显然更加普适、灵活)。 下图展示了模块一对多握手的示意图:…

阿里云服务器经济型e实例详细介绍_e系列性能价格表

阿里云服务器ECS推出经济型e系列&#xff0c;经济型e实例是阿里云面向个人开发者、学生、小微企业&#xff0c;在中小型网站建设、开发测试、轻量级应用等场景推出的全新入门级云服务器&#xff0c;CPU采用Intel Xeon Platinum架构处理器&#xff0c;支持1:1、1:2、1:4多种处理…

GLTF编辑器如何合并相同材质的Mesh

1、什么是模型材质合批 模型材质合批是一种技术手段&#xff0c;主要用于优化渲染性能和提高图形应用程序的帧率。它通过将多个模型的材质进行合并&#xff0c;从而减少渲染时的绘制调用次数。 在计算机图形学中&#xff0c;每个模型都有一个或多个材质&#xff0c;这些材质定义…

【教程】视频汇聚/视频监控管理平台EasyCVR录像存储功能如何优化?具体步骤是什么?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。视频监控系统EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云存储、…

使用 PyTorch 的计算机视觉简介 (5/6)

一、说明 本文主要介绍CNN中在pytorch的实现&#xff0c;其中VGG16网络&#xff0c;数据集来源&#xff0c;以及训练过程&#xff0c;模型生成和存储&#xff0c;模型调入等。 二、预训练模型和迁移学习 训练 CNN 可能需要大量时间&#xff0c;并且该任务需要大量数据。但是&am…

【每日一题】441. 排列硬币

441. 排列硬币 - 力扣&#xff08;LeetCode&#xff09; 你总共有 n 枚硬币&#xff0c;并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯&#xff0c;其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。 给你一个数字 n &#xff0c;计算并返回可形成 完整…

位段 联合体 枚举

Hello好久不见&#xff0c;今天分享的是接上次结构体没有分享完的内容&#xff0c;这次我们讲讲位段 枚举和联合体的概念以及他们的用法。 2.1 什么是位段 位段的声明和结构是类似的&#xff0c;有两个不同&#xff1a; 1.位段的成员必须是 int、unsigned int 或signed int 。 …

Unity下tga和png格式图片打包成AB包大小和加载速度测试

测试素材 测试素材&#xff0c;一张tga格式&#xff0c;一张png格式&#xff0c;他们的图像尺寸一样都是8K图。 两张图在AssetBundles里显示 Tga格式的图明显大很多&#xff0c;我们打包成ab包看看。 在PC 打包后看&#xff0c;明显大小一样&#xff0c;我们进行ab包加载&am…

通俗易懂讲解拥塞控制

文章目录 前言一、拥塞控制是什么&#xff1f;二、什么是拥塞窗口&#xff1f;和发送窗口有什么关系呢&#xff1f;三、慢启动四、阻塞避免算法五、拥塞发生状态时的算法以及快速重传以及快速恢复总结 前言 TCP的拥塞控制&#xff0c;以前觉得老复杂了&#xff0c;今天重温了一…

HTML - input type=file 允许用户选择多个文件

效果 示例 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><!-- When the multiple Boolean attribute is specified, the file input allows the user to select more than o…