计算机竞赛 深度学习+opencv+python实现车道线检测 - 自动驾驶

news2025/1/14 2:29:52

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
  • 6 数据集处理
  • 7 模型训练
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。

2 实现效果

在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 YOLOV5

简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

6 数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

数据保存

点击save,保存txt。

在这里插入图片描述

7 模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述
训练过程
在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1029920.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

❤Uniapp报npx update-browserslist-db@latest

❤ Uniapp报npx update-browserslist-dblatest 按照提示先更新一下 npx update-browserslist-dblatest然后打开一下端口

signal(SIGPIPE, SIG_IGN)

linux查看signal常见信号。 [rootplatform:]# kill -l1) HUP2) INT3) QUIT4) ILL5) TRAP6) ABRT7) BUS8) FPE9) KILL 10) USR1 11) SEGV 12) USR2 13) PIPE 14) ALRM 15) TERM 16) STKFLT 17) CHLD 18) CONT 19) STOP 20) TSTP 21) TTIN 22) TTOU 23) URG 24) XCPU 25) XFSZ 2…

使用Python进行供应链分析

供应链是生产和向客户交付货物所涉及的生产和物流网络。供应链分析是指分析供应链的各个组成部分,以了解如何提高供应链的有效性,为客户创造更多价值。所以,如果你想学习如何分析供应链,这篇文章是给你的。文章中,将带…

滑动窗口训练9.21

好久没有写博客了,自从上半年蓝桥杯结束后,就有点懈怠了 最近两三周才又慢慢刷起题来,也顺便记录下自己的成长! 今天是滑动窗口的章节,前两周刷了字符串、双指针、模拟。这些板块我都在leetcode上找了些题&#xff0…

【大学英语视听说上】Topic Presentation

(一些视听说的必要作业...) 展示,每人准备ppt文件,时长五分钟,第一分钟自我介绍,之后四分钟介绍一个主题。 例如:中秋节,英国地标建筑等等。 要求图文并茂,发音清楚标…

Intel汇编在VS下开发的环境配置

1. 创建一个C/C的空项目 2. 创建汇编源码文件, 就是C文件改后缀为asm 3. 在生成依赖项一栏中选择自定义 4. 选择masm 5. 在源文件上右击选择属性 6. 这么设置一下 7. 为了让代码看的更舒服一些, 添加一些高亮插件 8. 安装AsmHighligher和AsmDude插件(非必须), 其中前者主要是高…

RK3568驱动指南|第五期-中断-

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工…

债券风险价值类

声明 本文是学习GB-T 42815-2023 债券价格指标产品描述规范. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了债券价格指标产品各要素的定义、范围、框架及输出口径。 本文件适用于债券价格指标产品的编制发布机构及使用机构。 …

Rsync学习笔记1

企业架构Web服务器的文件及时同步: 1)能够理解为何要服务器的文件同步; 2)能够简单描述实现文件同步的几种方式; 3)能够实现服务器文件实时同步的案例; 服务器同步文件的必要性: …

求二维子数组的和(剖析)

文章目录 🐒个人主页🏅JavaSE系列专栏📖前言:本篇剖析一下二维子数组求和规则: 🐒个人主页 🏅JavaSE系列专栏 📖前言:本篇剖析一下二维子数组求和 规则: 这…

阿里员工曝光,跳槽提供流水,将28K改成38K,成功率高吗?

在这位员工的曝光中,他声称通过提供虚假简历,将自己的工作经验和技能水平夸大,以获得更高的薪资。此外,他还提供了虚假的流水,使自己的收入看起来更高。然而,这一行为无疑是违反道德和诚信原则的&#xff0…

向表中针对全部列插入数据

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 语法格式: insert into 表名 values(); 我们来查看test01表里面有几列 mysql> show databases; -------------------- | Database …

学习记忆——宫殿篇——记忆宫殿——记忆桩——学校

教室 桶 走道 桌子 暖气 窗台 后背 窗帘 监视器 白盒子 教师 讲台 表 投影仪 音响 窗 喇叭 黑板 门 栏杆 椅子 食堂 桶 刷卡器 柱子 桌子 风扇 灯罩 一列椅子 地面 大门空间 电视 活动室 盘子 纸盒 油桶 称 水桶 展牌 帘子 消防栓 毯子 储物箱 宿舍 梯子 坐垫 挂件 吊兰 君子…

zabbix学习3--zabbix6.x-proxy

文章目录 proxy proxy # 安装mysql 8.0# 获取源码包【https://www.zabbix.com/cn/download_sources】 mkdir -p /data/zabbix_proxy/{data,install,logs,php} mkdir -p /var/run/zabbix_proxy tar xf zabbix-6.4.3.tar.gz -C /data/zabbix_proxy/install/ cd /data/zabbix_pro…

华为坤灵再上新,助力中小企业转型“易”见未来

中小企业,堪称国民经济发展的毛细血管,数量众多、分布广泛却又无比重要。 随着数字经济成为各行各业的主战场,数字化转型已是中小企业打开高质量发展之门的那把关键钥匙。《数字中国建设整体布局规划》就明确指出,推动数字技术和…

argparse的用法

目录 一、使用argparse 二、参数详解 参考 一、使用argparse argparse 模块是 Python 内置的用于命令项选项与参数解析的模块,argparse 模块可以让人轻松编写用户友好的命令行接口,能够帮助程序员为模型定义参数。 argparse定义包括四个步骤&#xff…

线路中故障电弧产生了应该如何治理?-安科瑞黄安南

故障电弧的危害 故障电弧是指由于电气线路或设备中绝缘老化破损、电气连接松动、空气潮湿、电压电流急剧升高等原因引起空气击穿所导致的气体游离放电现象。故障电弧发生时,其中心温度可高达3000 ℃左右,并伴随有金属喷溅物,足以引燃任何可燃…

【AD】【规则设置】关于绿色报错的消除

关于绿色报错的消除 1、打开 在上面工具栏的 Tools - Design Rule Checker2、这两列,分别右键 选择 Batch DRC - All Off 取消掉所有的打钩3、再点击左侧的Electrical 把右边的这几个都打钩 每天进步一点点 如果我的学习记录有帮到你,可否赏点买辣条的钱…

提高接口自动化测试效率:使用 JMESPath 实现断言和数据提取!

前言 做接口自动化,断言是比不可少的。如何快速巧妙的提取断言数据就成了关键,当然也可以提高用例的编写效率。笔者在工作中接触到了JMESPath,那到底该如何使用呢?带着疑惑一起往下看。 JMESPath是啥? JMESPath 是一…

安达发APS|生产计划部门如何提升产量?

在当下制造业中,生产计划的制定和执行对于提高产量、降低成本、保证交货期等方面具有重要意义。随着科技的发展,越来越多的企业开始使用APS生产排程软件来优化生产计划,提高生产效率。本文将从以下几个方面介绍如何利用APS生产排程软件提升产…