RocketMQ 核心编程模型以及生产环境最佳实践

news2024/9/29 21:25:07

文章目录

  • 1、RocketMQ的消息模型
  • 2、深入理解RocketMQ的消息模型
    • 2.1、RocketMQ客户端基本流程
    • 2.2、消息确认机制
      • 2.2.1、 发送消息的方式
        • 第一种称为单向发送
        • 第二种称为同步发送
        • 第三种称为异步发送
      • 2.2.2、状态确认机制
      • 2.2.3、消费者也可以自行指定起始消费位点
    • 2.3、广播消息
    • 2.4、顺序消息机制

1、RocketMQ的消息模型

在这里插入图片描述

2、深入理解RocketMQ的消息模型

2.1、RocketMQ客户端基本流程

RocketMQ基于Maven提供了客户端的核心依赖:

<dependency>
        <groupId>org.apache.rocketmq</groupId>
        <artifactId>rocketmq-client</artifactId>
        <version>4.9.5</version>
</dependency>

​ 使用客户端进行编程时,添加这一个核心依赖就够了。 另外还有一个与权限控制相关的核心依赖也需要了解。尽量保持与服务端版一致。

<dependency>
        <groupId>org.apache.rocketmq</groupId>
        <artifactId>rocketmq-acl</artifactId>
        <version>4.9.5</version>
</dependency>

一个最为简单的消息生产者代码如下

public class Producer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        //初始化一个消息生产者
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
        // 指定nameserver地址
        producer.setNamesrvAddr("192.168.232.128:9876");
        // 启动消息生产者服务
        producer.start();
        for (int i = 0; i < 2; i++) {
            try {
                // 创建消息。消息由Topic,Tag和body三个属性组成,其中Body就是消息内容
                Message msg = new Message("TopicTest","TagA",("Hello RocketMQ " +i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                //发送消息,获取发送结果
                SendResult sendResult = producer.send(msg);
                System.out.printf("%s%n", sendResult);
            } catch (Exception e) {
                e.printStackTrace();
                Thread.sleep(1000);
            }
        }
        //消息发送完后,停止消息生产者服务。
        producer.shutdown();
    }
}

一个简单的消息消费者代码如下:

public class Consumer {
   public static void main(String[] args) throws InterruptedException, MQClientException {
       //构建一个消息消费者
       DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
       //指定nameserver地址
      consumer.setNamesrvAddr("192.168.232.128:9876");
      consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
       // 订阅一个感兴趣的话题,这个话题需要与消息的topic一致
       consumer.subscribe("TopicTest", "*");
       // 注册一个消息回调函数,消费到消息后就会触发回调。
       consumer.registerMessageListener(new MessageListenerConcurrently() {
           @Override
           public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,ConsumeConcurrentlyContext context) {
   msgs.forEach(messageExt -> {
                   try {
                       System.out.println("收到消息:"+new String(messageExt.getBody(), RemotingHelper.DEFAULT_CHARSET));
                   } catch (UnsupportedEncodingException e) {}
               });
               return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
           }
       });
       //启动消费者服务
       consumer.start();
       System.out.print("Consumer Started");
   }
}


RocketMQ的客户端编程模型相对比较固定,基本都有一个固定的步骤。掌握这个固定步骤,对于学习其他复杂的消息模型也是很有帮助的。

  • 消息生产者的固定步骤
    1.创建消息生产者producer,并指定生产者组名
    2.指定Nameserver地址
    3.启动producer。 这个步骤比较容易忘记。可以认为这是消息生产者与服务端建立连接的过程。
    4.创建消息对象,指定主题Topic、Tag和消息体
    5.发送消息
    6.关闭生产者producer,释放资源。

  • 消息消费者的固定步骤
    1.创建消费者Consumer,必须指定消费者组名
    2.指定Nameserver地址
    3.订阅主题Topic和Tag
    4.设置回调函数,处理消息
    5.启动消费者consumer。消费者会一直挂起,持续处理消息。

​ 其中,最为关键的就是NameServer。从示例中可以看到,RocketMQ的客户端只需要指定NameServer地址,而不需要指定具体的Broker地址。

​ 指定NameServer的方式有两种。可以在客户端直接指定,例如 consumer.setNameSrvAddr(“127.0.0.1:9876”)。然后,也可以通过读取系统环境变量NAMESRV_ADDR指定。其中第一种方式的优先级更高。

2.2、消息确认机制

​ RocketMQ要支持互联网金融场景,那么消息安全是必须优先保障的。而消息安全有两方面的要求,一方面是生产者要能确保将消息发送到Broker上。另一方面是消费者要能确保从Broker上争取获取到消息。

2.2.1、 发送消息的方式

消息生产端采用消息确认加多次重试的机制保证消息正常发送到RocketMQ
针对消息发送的不确定性,封装了三种发送消息的方式。

第一种称为单向发送

​ 单向发送方式下,消息生产者只管往Broker发送消息,而全然不关心Broker端有没有成功接收到消息。这就好比生产者向Broker发一封电子邮件,Broker有没有处理电子邮件,生产者并不知道。

public class OnewayProducer {
    public static void main(String[] args)throws Exception{
        DefaultMQProducer producer = new DefaultMQProducer("producerGroup");
        producer.start();
        Message message = new Message("Order","tag","order info : orderId = xxx".getBytes(StandardCharsets.UTF_8));
        producer.sendOneway(message);
        Thread.sleep(50000);
        producer.shutdown();
    }
}

​ sendOneway方法没有返回值,如果发送失败,生产者无法补救。

​ 单向发送有一个好处,就是发送消息的效率更高。适用于一些追求消息发送效率,而允许消息丢失的业务场景。比如日志。

第二种称为同步发送

​ 同步发送方式下,消息生产者在往Broker端发送消息后,会阻塞当前线程,等待Broker端的相应结果。这就好比生产者给Broker打了个电话。通话期间生产者就停下手头的事情,直到Broker明确表示消息处理成功了,生产者才继续做其他的事情。

 SendResult sendResult = producer.send(msg);

​ SendResult来自于Broker的反馈。producer在send发出消息,到Broker返回SendResult的过程中,无法做其他的事情。

​ 在SendResult中有一个SendStatus属性,这个SendStatus是一个枚举类型,其中包含了Broker端的各种情况。

public enum SendStatus {
    SEND_OK,
    FLUSH_DISK_TIMEOUT,
    FLUSH_SLAVE_TIMEOUT,
    SLAVE_NOT_AVAILABLE,
}

在这几种枚举值中,SEND_OK表示消息已经成功发送到Broker上。至于其他几种枚举值,都是表示消息在Broker端处理失败了。使用同步发送的机制,我们就可以在消息生产者发送完消息后,对发送失败的消息进行补救。例如重新发送。

​ 但是此时要注意,如果Broker端返回的SendStatus不是SEND_OK,也并不表示消息就一定不会推送给下游的消费者。仅仅只是表示Broker端并没有完全正确的处理这些消息。因此,如果要重新发送消息,最好要带上唯一的系统标识,这样在消费者端,才能自行做幂等判断。也就是用具有业务含义的OrderID这样的字段来判断消息有没有被重复处理。

​ 这种同步发送的机制能够很大程度上保证消息发送的安全性。但是,这种同步发送机制的发送效率比较低。毕竟,send方法需要消息在生产者和Broker之间传输一个来回后才能结束。如果网速比较慢,同步发送的耗时就会很长。

第三种称为异步发送

​ 异步发送机制下,生产者在向Broker发送消息时,会同时注册一个回调函数。接下来生产者并不等待Broker的响应。当Broker端有响应数据过来时,自动触发回调函数进行对应的处理。这就好比生产者向Broker发电子邮件通知时,另外找了一个代理人专门等待Broker的响应。而生产者自己则发完消息后就去做其他的事情去了。

	producer.send(msg, new SendCallback() {
                    @Override
                    public void onSuccess(SendResult sendResult) {
                        countDownLatch.countDown();
                        System.out.printf("%-10d OK %s %n", index, sendResult.getMsgId());
                    }
                    @Override
                    public void onException(Throwable e) {
                        countDownLatch.countDown();
                        System.out.printf("%-10d Exception %s %n", index, e);
                        e.printStackTrace();
                    }
                });

​ 在SendCallback接口中有两个方法,onSuccess和onException。当Broker端返回消息处理成功的响应信息SendResult时,就会调用onSuccess方法。当Broker端处理消息超时或者失败时,就会调用onExcetion方法,生产者就可以在onException方法中进行补救措施。

​ 此时同样有几个问题需要注意。

  • 一是与同步发送机制类似,触发了SendCallback的onException方法同样并不一定就表示消息不会向消费者推送。如果Broker端返回响应信息太慢,超过了超时时间,也会触发onException方法。超时时间默认是3秒,可以通过producer.setSendMsgTimeout方法定制。而造成超时的原因则有很多,消息太大造成网络拥堵、网速太慢、Broker端处理太慢等都可能造成消息处理超时。
  • 二是在SendCallback的对应方法被触发之前,生产者不能调用shutdown()方法。如果消息处理完之前,生产者线程就关闭了,生产者的SendCallback对应方法就不会触发。这是因为使用异步发送机制后,生产者虽然不用阻塞下来等待Broker端响应,但是SendCallback还是需要附属于生产者的主线程才能执行。如果Broker端还没有返回SendResult,而生产者主线程已经停止了,那么SendCallback的执行线程也就会随主线程一起停止,对应的方法自然也就无法执行了。

​ 这种异步发送的机制能够比较好的兼容消息的安全性以及生产者的高吞吐需求,是很多MQ产品都支持的方式。RabbitMQ和Kafka都支持这种异步发送的机制。但是异步发送机制也并不是万能的,毕竟异步发送机制对消息生产者的主线业务是有侵入的。具体使用时还是需要根据业务场景考虑。

​ RocketMQ提供的这三种发送消息的方式,并不存在绝对的好坏之分。我们更多的是需要根据业务场景进行选择。例如在电商下单这个场景,我们就应该尽量选择同步发送或异步发送,优先保证数据安全。然后,如果下单场景的并发比较高,业务比较繁忙,就应该尽量优先选择异步发送的机制。这时,我们就应该对下单服务的业务进行优化定制,尽量适应异步发送机制的要求。这样就可以尽量保证下单服务能够比较可靠的将用户的订单消息发送到RocketMQ了。

2.2.2、状态确认机制

消息消费者端采用状态确认机制保证消费者一定能正常处理对应的消息

​ 我们之前分析生产者的可靠性问题,核心的解决思路就是通过确认Broker端的状态来保证生产者发送消息的可靠性。对于RocketMQ的消费者来说,保证消息处理可靠性的思路也是类似的。只不过这次换成了Broker等待消费者返回消息处理状态。

consumer.registerMessageListener(new MessageListenerConcurrently() {
            @Override
            public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
                System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
                return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
            }
        });

​ 这个返回值是一个枚举值,有两个选项 CONSUME_SUCCESS和RECONSUME_LATER。如果消费者返回CONSUME_SUCCESS,那么消息自然就处理结束了。但是如果消费者没有处理成功,返回的是RECONSUME_LATER,Broker就会过一段时间再发起消息重试。

​ 为了要兼容重试机制的成功率和性能,RocketMQ设计了一套非常完善的消息重试机制,从而尽可能保证消费者能够正常处理用户的订单信息。

​ 1、Broker不可能无限制的向消费失败的消费者推送消息。如果消费者一直没有恢复,Broker显然不可能一直无限制的推送,这会浪费集群很多的性能。所以,Broker会记录每一个消息的重试次数。如果一个消息经过很多次重试后,消费者依然无法正常处理,那么Broker会将这个消息推入到消费者组对应的死信Topic中。死信Topic相当于windows当中的垃圾桶。你可以人工介入对死信Topic中的消息进行补救,也可以直接彻底删除这些消息。RocketMQ默认的最大重试次数是16次。

​ 2、为了让这些重试的消息不会影响Topic下其他正常的消息,Broker会给每个消费者组设计对应的重试Topic。MessageQueue是一个具有严格FIFO特性的数据结构。如果需要重试的这些消息还是放在原来的MessageQueue中,就会对当前MessageQueue产生阻塞,让其他正常的消息无法处理。RocketMQ的做法是给每个消费者组自动生成一个对应的重试Topic。在消息需要重试时,会先移动到对应的重试Topic中。后续Broker只要从这些重试Topic中不断拿出消息,往消费者组重新推送即可。这样,这些重试的消息有了自己单独的队列,就不会影响到Topic下的其他消息了。

​ 3、RocketMQ中设定的消费者组都是订阅主题和消费逻辑相同的服务备份,所以当消息重试时,Broker只要往消费者组中随意一个实例推送即可。这是消息重试机制能够正常运行的基础。但是,在客户端的具体实现时,MQDefaultMQConsumer并没有强制规定消费者组不能重复。也就是说,你完全可以实现出一些订阅主题和消费逻辑完全不同的消费者服务,共同组成一个消费组。在这种情况下,RocketMQ不会报错,但是消息的处理逻辑就无法保持一致了。这会给业务带来很大的麻烦。这是在实际应用时需要注意的地方。

​ 4、Broker端最终只通过消费者组返回的状态来确定消息有没有处理成功。至于消费者组自己的业务执行是否正常,Broker端是没有办法知道的。因此,在实现消费者的业务逻辑时,应该要尽量使用同步实现方式,保证在自己业务处理完成之后再向Broker端返回状态。而应该尽量避免异步的方式处理业务逻辑。

2.2.3、消费者也可以自行指定起始消费位点

​ Broker端通过Consumer返回的状态来推进所属消费者组对应的Offset。但是,这里还是会造成一种分裂,消息最终是由Consumer来处理,但是消息却是由Broker推送过来的,也就是说,Consumer无法确定自己将要处理的是哪些消息。这就好比你上班做一天事情,公司负责给你发一笔工资。如果一切正常,那么没什么问题。 但是如果出问题了呢?公司拖欠了你的工资,这时,你就还是需要能到公司查账,至少查你自己的工资记录。从上一次发工资的时候计算你该拿的钱。

​ 对消息队列也一样。虽然Offset完全由Broker进行维护,但是,RocketMQ也允许Consumer自己去查账,自己指定消费位点。核心代码是在Consumer中设定了一个属性ConsumeFromWhere,表示在Consumer启动时,从哪一条消息开始进行消费。Consumer当然不可能精确的知道Offset的具体参数,所以这个ConsumerFromWhere并不是直接传入Offset位点,而是可以传入一个ConsumerFromWhere对象,这是一个枚举值。名字一目了然。

public enum ConsumeFromWhere {
    CONSUME_FROM_LAST_OFFSET, //从队列的第一条消息开始重新消费
    CONSUME_FROM_FIRST_OFFSET, //从上次消费到的地方开始继续消费
    CONSUME_FROM_TIMESTAMP; //从某一个时间点开始重新消费
}

​ 另外,如果指定了ConsumerFromWhere.CONSUME_FROM_TIMESTAMP,这就表示要从一个具体的时间开始。具体时间点,需要通过Consumer的另一个属性ConsumerTimestamp。这个属性可以传入一个表示时间的字符串。

consumer.setConsumerTimestamp("20131223171201");

​ 到这里,我们就从客户端的角度分析清楚了要如何保证消息的安全性。但是消息安全问题其实是一个非常体系化的问题,涉及到的不光是客户端,还需要服务端配合。关于这个问题,我们会在后面的分享过程当中继续带你一起思考。

2.3、广播消息

应用场景:

​ 广播模式和集群模式是RocketMQ的消费者端处理消息最基本的两种模式。集群模式下,一个消息,只会被一个消费者组中的多个消费者实例 共同 处理一次。广播模式下,一个消息,则会推送给所有消费者实例处理,不再关心消费者组。

示例代码:

​ 消费者核心代码

consumer.setMessageModel(MessageModel.BROADCASTING);

​ 启动多个消费者,广播模式下,这些消费者都会消费一次消息。

实现思路:

​ 默认模式(也就是集群模式)下,Broker端会给每个ConsumerGroup维护一个统一的Offset,这个Offset可以保证一个消息,在同一个ConsumerGroup内只会被消费一次。而广播模式的实现方式,是将Offset转移到消费者端自行保管,这样Broker端只管向所有消费者推送消息,而不用负责维护消费进度。

注意点:

1、Broker端不维护消费进度,意味着,如果消费者处理消息失败了,将无法进行消息重试。

2、消费者端维护Offset的作用是可以在服务重启时,按照上一次消费的进度,处理后面没有消费过的消息。丢了也不影响服务稳定性。

​ 比如生产者发送了1~10号消息。消费者当消费到第6个时宕机了。当他重启时,Broker端已经把第10个消息都推送完成了。如果消费者端维护好了自己的Offset,那么他就可以在服务重启时,重新向Broker申请6号到10号的消息。但是,如果消费者端的Offset丢失了,消费者服务依然可以正常运行,但是6到10号消息就无法再申请了。后续这个消费者就只能获取10号以后的消息。

​ 实际上,Offset的维护数据是放在

${user.home}/.rocketmq_offset/${clientIp}${instanceName}/${group}/offsets.json

文件下的。

​ 消费者端存储广播消费的本地offsets文件的默认缓存目录是 System.getProperty(“user.home”) + File.separator + “.rocketmq_offsets” ,可以通过定制 rocketmq.client.localOffsetStoreDir 系统属性进行修改。

​ 本地offsets文件在缓存目录中的具体位置与消费者的clientIp 和 instanceName有关。其中instanceName默认是DEFAULT,可以通过定制系统属性 rocketmq.client.name 进行修改。另外,每个消费者对象也可以单独设定instanceName。

​ RocketMQ会通过定时任务不断尝试本地Offsets文件的写入,但是,如果本地Offsets文件写入失败,RocketMQ不会进行任何的补救。

如果想要了解更多细节,可以看下我的博文: https://blog.csdn.net/roykingw/article/details/126351010。这里也揭示了一个小问题,如果在Windows本地使用SpringBoot集成RocketMQ的话,广播消息的offset.json文件将无法保存。

2.4、顺序消息机制

应用场景:

​ 每一个订单有从下单、锁库存、支付、下物流等几个业务步骤。每个业务步骤都由一个消息生产者通知给下游服务。如何保证对每个订单的业务处理顺序不乱?

示例代码:

​ 生产者核心代码:

for (int i = 0; i < 10; i++) {
                int orderId = i;
                for(int j = 0 ; j <= 5 ; j ++){
                    Message msg =
                            new Message("OrderTopicTest", "order_"+orderId, "KEY" + orderId,
                                    ("order_"+orderId+" step " + j).getBytes(RemotingHelper.DEFAULT_CHARSET));
                    SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
                        @Override
                        public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
                            Integer id = (Integer) arg;
                            int index = id % mqs.size();
                            return mqs.get(index);
                        }
                    }, orderId);
                    System.out.printf("%s%n", sendResult);
                }
            }

​ 通过MessageSelector,将orderId相同的消息,都转发到同一个MessageQueue中。

​ 消费者核心代码:

consumer.registerMessageListener(new MessageListenerOrderly() {
          @Override
          public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
              context.setAutoCommit(true);
              for(MessageExt msg:msgs){
                  System.out.println("收到消息内容 "+new String(msg.getBody()));
              }
              return ConsumeOrderlyStatus.SUCCESS;
          }
      });

​ 注入一个MessageListenerOrderly实现。

实现思路:

​ 基础思路:只有放到一起的一批消息,才有可能保持消息的顺序。

在这里插入图片描述

1、生产者只有将一批有顺序要求的消息,放到同一个MesasgeQueue上,Broker才有可能保持这一批消息的顺序。

​ 2、消费者只有一次锁定一个MessageQueue,拿到MessageQueue上所有的消息

注意点:

  • 理解局部有序与全局有序。大部分业务场景下,我们需要的其实是局部有序。如果要保持全局有序,那就只保留一个MessageQueue。性能显然非常低。

  • 生产者端尽可能将有序消息打散到不同的MessageQueue上,避免过于几种导致数据热点竞争。

  • 消费者端只能用同步的方式处理消息,不要使用异步处理。更不能自行使用批量处理。

  • 消费者端只进行有限次数的重试。如果一条消息处理失败,RocketMQ会将后续消息阻塞住,让消费者进行重试。但是,如果消费者一直处理失败,超过最大重试次数,那么RocketMQ就会跳过这一条消息,处理后面的消息,这会造成消息乱序。

  • 消费者端如果确实处理逻辑中出现问题,不建议抛出异常,可以返回ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT作为替代。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1025541.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nginx 报错[emerg]: unknown directive “锘? in E:\nginx-1.18.0/conf/nginx.conf:3

报错&#xff1a;nginx 报错[emerg] 32408#14080: unknown directive "锘? in E:\nginx-1.18.0/conf/nginx.conf:3 原因&#xff1a;使用nginx服务时&#xff0c;用txt记事本打开编辑了nginx.conf文件&#xff0c;类似WINDOWS自带的记事本等软件&#xff0c;在保存一个以…

mysql触发器triggers

文章目录 1、创建触发器2、 查看触发器3、删除触发器 1、创建触发器 语法&#xff1a; CREATE TRIGGER 触发器名称 BEFORE/AFTER INSERT/UPDATE/DELETE ON 表名 FOR EACH ROW BEGIN SQL逻辑 END;BEFORE 或 AFTER 表示之前 还是 之后触发 INSERT 或 UPDATE 或 DELETE 表示监听…

PostgreSQL 查询某个属性相同内容出现的次数

查询某个数据库表属性 name 相同内容出现出现的次数&#xff0c;并按次数从大到小排序 SELECT name, COUNT(*) AS count FROM your_table GROUP BY name ORDER BY count DESC;示例 select project_id, COUNT(*) AS count from app_ads_positions group by project_id order b…

(WRF/Chem)在大气环境领域实践技术应用

随着我国经济快速发展&#xff0c;我国面临着日益严重的大气污染问题。近年来&#xff0c;严重的大气污染问题已经明显影响国计民生&#xff0c;引起政府、学界和人们越来越多的关注。大气污染是工农业生产、生活、交通、城市化等方面人为活动的综合结果&#xff0c;同时气象因…

智能报修管理系统的作用和功能

智能报修管理系统针对不同的服务对象、不同的服务内容、不同的紧急情况&#xff0c;不同的区域&#xff0c;自定义设定响应指标&#xff0c;承诺客户在多长时间内响应或是解决问题&#xff0c;保障服务质量。随着报修、后勤、运维等规模日趋庞大&#xff0c;许多单位每日需处理…

echarts-根据数据大小实现折线渐变色

先看示例图&#xff1a; 这几年一直在做大数据可视化前端开发&#xff0c;接下来把近几年用到的比较经典案例给大家分享下&#xff0c;主要用到的可视化库为Echarts、Threejs、Element、D3、fabricjs等。 这个案例是Echarts&#xff0c;Echarts算是学习成本比较低的一个很好的…

Java下打印一个等腰三角型

想达到这个结果&#xff0c;通常的做法是通过拼结两个三角型达到&#xff0c;但是实际上还有最右边的第三个三角型没有处理&#xff0c;这个拼结的方法总让人看起来有一点不完美的感觉&#xff0c;于是我自创了一个思路&#xff0c;一气合成&#xff0c;代码如下&#xff08;本…

想要提高客户留资率?一个留资机器人就够了!

随着移动互联网进入“下半场”&#xff0c;用户在线参与率持续上升&#xff0c;导致企业的获客成本不断攀升。特别是近年来新型营销场景如直播销售、内容推广和短视频引流等的不断涌现&#xff0c;企业在多个渠道和平台上的广告支出激增&#xff0c;试图吸引更多潜在客户。然而…

提升开发效率的低代码思路

目录 一、低代码如何快速开发&#xff1f; 1.可视化开发 2.预构建的组件和模板 3.集成的开发和测试工具 4.跨平台兼容性 5.可伸缩性和可扩展性 二、前后端分离的开发框架 技术架构 部署方式 应用入口 三、小结 低代码开发工具正在日益变得强大&#xff0c;它正不断弥合着前后端…

咨询电商平台API的调用方法!

一、引言 随着电子商务的快速发展&#xff0c;电商平台间的竞争愈加激烈。为了提供更加优质的服务&#xff0c;很多电商平台会开放其商品API数据&#xff0c;允许第三方开发者利用这些数据创建各种应用。本文将对商品API数据的概念、获取方式以及在电商中的应用进行探讨&#…

laravel 阿里云短信发送

示例 一、安装 安装&#xff1a;composer require mrgoon/aliyun-sms dev-master 二、打开config/app.php&#xff0c;添加配置代码 1、‘providers’ 配置组下添加 Mrgoon\Aliyunsms\AliyunsmsServiceProvider::class, 2、‘aliases’ 配置组下添加 Aliyunsms>Mrgoon…

【计算机网络 - 自顶向下方法】计算机网络和因特网

目录 1. What is the Internet? 1.1 因特网的具体构成 1.2 因特网的功能 2. Network core 2.1 基本介绍 2.2 分组交换 2.2.1 序列化时延 2.2.2 排队延迟和丢包 2.2.3 分组交换的优缺点 2.3 电路交换 2.3.1 基本概念 2.3.2 电路交换网络中的复用 2.3.3 电路交换文件…

vue3 封装公共弹窗函数

前言&#xff1a; 博主封装了一个公共弹窗函数接收四个参数&#xff0c;&#xff08;title&#xff1a;弹窗标题, ContentComponent&#xff1a;弹窗中显示的组件内容, opt&#xff1a;接收弹窗本身的属性和props, beforeSure&#xff1a;点击确定做的操作&#xff08;请求后端…

《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)

LeNet、AlexNet和VGG的设计模式都是先用卷积层与汇聚层提取特征&#xff0c;然后用全连接层对特征进行处理。 AlexNet和VGG对LeNet的改进主要在于扩大和加深这两个模块。网络中的网络&#xff08;NiN&#xff09;则是在每个像素的通道上分别使用多层感知机。 import torch fr…

JumpServer开源堡垒机与爱可生云树数据库完成兼容性认证

近日&#xff0c;中国领先的开源软件提供商FIT2CLOUD飞致云宣布&#xff0c;JumpServer开源堡垒机已经完成与爱可生云树数据库软件的兼容性认证。经过双方联合测试&#xff0c;云树数据库软件&#xff08;简称&#xff1a;ActionDB&#xff09;V1.0与杭州飞致云信息科技有限公司…

前端提高代码质量-提升代码的可维护性

代码质量是一个非常重要的概念&#xff0c;它决定了代码的可读性、可维护性、可扩展性和稳定性。在前端开发中&#xff0c;提升代码质量可以帮助我们减少错误、提高开发效率、降低维护成本&#xff0c;甚至可以提高用户体验。 在必要的地方加注释 良好的注释可以帮助开发人员理…

使用RKDevTool将update.img完整镜像进行解包,得到单独分区的镜像

(1)使用开发工具高级功能的解包 导入xx.img,然后点击解包(2)在Output/Android/Image得到想要的image

zotero通过DOI快速导入文献

之前我经常采用两种方式导入文献&#xff1a; &#xff08;1&#xff09;下载PDF&#xff0c;然后拖入zotero 这种方法比较费时间&#xff0c;有些文献无法下载pdf &#xff08;2&#xff09;通过google scholar检索文献&#xff0c;然后点击引用——EndNote&#xff0c;chorme…

HCQ1-1300-D故障笔记

常用查错网址&#xff1a; SMC_ERROR (ENUM) 删除 Web