HuggingFace Transformer

news2025/1/4 16:07:22

NLP简介

在这里插入图片描述
在这里插入图片描述

HuggingFace简介

hugging face在NLP领域最出名,其提供的模型大多都是基于Transformer的。为了易用性,Hugging Face还为用户提供了以下几个项目:

  • Transformers(github, 官方文档): Transformers提供了上千个预训练好的模型可以用于不同的任务,例如文本领域、音频领域和CV领域。该项目是HuggingFace的核心,可以说学习HuggingFace就是在学习该项目如何使用。
  • Datasets(github, 官方文档): 一个轻量级的数据集框架,主要有两个功能:①一行代码下载和预处理常用的公开数据集; ② 快速、易用的数据预处理类库。
  • Accelerate(github, 官方文档): 帮助Pytorch用户很方便的实现 multi-GPU/TPU/fp16。
  • Space:Space提供了许多好玩的深度学习应用,可以尝试玩一下。

Transformers

在这里插入图片描述

1. Pipeline流水线

数据预处理tokenizer、模型调用model、结果后处理组装成一个流水线

在这里插入图片描述

Pipeline原理

pipeline(data, model, tokenizer, divece)的原理:

在这里插入图片描述

Pipeline使用方法

一般使用较多的方法是分别构建modeltokenizer,并指定task任务类型将其分别加入pipeline
(每类pipeline的具体使用方法可以点进具体Pipeline类的源码中查看!!)
在这里插入图片描述

Pipeline的Task类型

  • audio-classification {‘impl’: <class ‘transformers.pipelines.audio_classification.AudioClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForAudioClassification’>,), ‘default’: {‘model’: {‘pt’: (‘superb/wav2vec2-base-superb-ks’, ‘372e048’)}}, ‘type’: ‘audio’}
  • automatic-speech-recognition {‘impl’: <class ‘transformers.pipelines.automatic_speech_recognition.AutomaticSpeechRecognitionPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForCTC’>, <class ‘transformers.models.auto.modeling_auto.AutoModelForSpeechSeq2Seq’>), ‘default’: {‘model’: {‘pt’: (‘facebook/wav2vec2-base-960h’, ‘55bb623’)}}, ‘type’: ‘multimodal’}
  • feature-extraction {‘impl’: <class ‘transformers.pipelines.feature_extraction.FeatureExtractionPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModel’>,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-cased’, ‘935ac13’), ‘tf’: (‘distilbert-base-cased’, ‘935ac13’)}}, ‘type’: ‘multimodal’}
  • text-classification {‘impl’: <class ‘transformers.pipelines.text_classification.TextClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSequenceClassification’>,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-uncased-finetuned-sst-2-english’, ‘af0f99b’), ‘tf’: (‘distilbert-base-uncased-finetuned-sst-2-english’, ‘af0f99b’)}}, ‘type’: ‘text’}
  • token-classification {‘impl’: <class ‘transformers.pipelines.token_classification.TokenClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForTokenClassification’>,), ‘default’: {‘model’: {‘pt’: (‘dbmdz/bert-large-cased-finetuned-conll03-english’, ‘f2482bf’), ‘tf’: (‘dbmdz/bert-large-cased-finetuned-conll03-english’, ‘f2482bf’)}}, ‘type’: ‘text’}
  • question-answering {‘impl’: <class ‘transformers.pipelines.question_answering.QuestionAnsweringPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForQuestionAnswering’>,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-cased-distilled-squad’, ‘626af31’), ‘tf’: (‘distilbert-base-cased-distilled-squad’, ‘626af31’)}}, ‘type’: ‘text’}
  • table-question-answering {‘impl’: <class ‘transformers.pipelines.table_question_answering.TableQuestionAnsweringPipeline’>, ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForTableQuestionAnswering’>,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘google/tapas-base-finetuned-wtq’, ‘69ceee2’), ‘tf’: (‘google/tapas-base-finetuned-wtq’, ‘69ceee2’)}}, ‘type’: ‘text’}
  • visual-question-answering {‘impl’: <class ‘transformers.pipelines.visual_question_answering.VisualQuestionAnsweringPipeline’>, ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForVisualQuestionAnswering’>,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘dandelin/vilt-b32-finetuned-vqa’, ‘4355f59’)}}, ‘type’: ‘multimodal’}
  • document-question-answering {‘impl’: <class ‘transformers.pipelines.document_question_answering.DocumentQuestionAnsweringPipeline’>, ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForDocumentQuestionAnswering’>,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘impira/layoutlm-document-qa’, ‘52e01b3’)}}, ‘type’: ‘multimodal’}
  • fill-mask {‘impl’: <class ‘transformers.pipelines.fill_mask.FillMaskPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForMaskedLM’>,), ‘default’: {‘model’: {‘pt’: (‘distilroberta-base’, ‘ec58a5b’), ‘tf’: (‘distilroberta-base’, ‘ec58a5b’)}}, ‘type’: ‘text’}
  • summarization {‘impl’: <class ‘transformers.pipelines.text2text_generation.SummarizationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’>,), ‘default’: {‘model’: {‘pt’: (‘sshleifer/distilbart-cnn-12-6’, ‘a4f8f3e’), ‘tf’: (‘t5-small’, ‘d769bba’)}}, ‘type’: ‘text’}
  • translation {‘impl’: <class ‘transformers.pipelines.text2text_generation.TranslationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’>,), ‘default’: {(‘en’, ‘fr’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, (‘en’, ‘de’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, (‘en’, ‘ro’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}}, ‘type’: ‘text’}
  • text2text-generation {‘impl’: <class ‘transformers.pipelines.text2text_generation.Text2TextGenerationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’>,), ‘default’: {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, ‘type’: ‘text’}
  • text-generation {‘impl’: <class ‘transformers.pipelines.text_generation.TextGenerationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForCausalLM’>,), ‘default’: {‘model’: {‘pt’: (‘gpt2’, ‘6c0e608’), ‘tf’: (‘gpt2’, ‘6c0e608’)}}, ‘type’: ‘text’}
  • zero-shot-classification {‘impl’: <class ‘transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSequenceClassification’>,), ‘default’: {‘model’: {‘pt’: (‘facebook/bart-large-mnli’, ‘c626438’), ‘tf’: (‘roberta-large-mnli’, ‘130fb28’)}, ‘config’: {‘pt’: (‘facebook/bart-large-mnli’, ‘c626438’), ‘tf’: (‘roberta-large-mnli’, ‘130fb28’)}}, ‘type’: ‘text’}
  • zero-shot-image-classification {‘impl’: <class ‘transformers.pipelines.zero_shot_image_classification.ZeroShotImageClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForZeroShotImageClassification’>,), ‘default’: {‘model’: {‘pt’: (‘openai/clip-vit-base-patch32’, ‘f4881ba’), ‘tf’: (‘openai/clip-vit-base-patch32’, ‘f4881ba’)}}, ‘type’: ‘multimodal’}
  • zero-shot-audio-classification {‘impl’: <class ‘transformers.pipelines.zero_shot_audio_classification.ZeroShotAudioClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModel’>,), ‘default’: {‘model’: {‘pt’: (‘laion/clap-htsat-fused’, ‘973b6e5’)}}, ‘type’: ‘multimodal’}
  • conversational {‘impl’: <class ‘transformers.pipelines.conversational.ConversationalPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’>, <class ‘transformers.models.auto.modeling_auto.AutoModelForCausalLM’>), ‘default’: {‘model’: {‘pt’: (‘microsoft/DialoGPT-medium’, ‘8bada3b’), ‘tf’: (‘microsoft/DialoGPT-medium’, ‘8bada3b’)}}, ‘type’: ‘text’}
  • image-classification {‘impl’: <class ‘transformers.pipelines.image_classification.ImageClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForImageClassification’>,), ‘default’: {‘model’: {‘pt’: (‘google/vit-base-patch16-224’, ‘5dca96d’), ‘tf’: (‘google/vit-base-patch16-224’, ‘5dca96d’)}}, ‘type’: ‘image’}
  • image-segmentation {‘impl’: <class ‘transformers.pipelines.image_segmentation.ImageSegmentationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForImageSegmentation’>, <class ‘transformers.models.auto.modeling_auto.AutoModelForSemanticSegmentation’>), ‘default’: {‘model’: {‘pt’: (‘facebook/detr-resnet-50-panoptic’, ‘fc15262’)}}, ‘type’: ‘multimodal’}
  • image-to-text {‘impl’: <class ‘transformers.pipelines.image_to_text.ImageToTextPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForVision2Seq’>,), ‘default’: {‘model’: {‘pt’: (‘ydshieh/vit-gpt2-coco-en’, ‘65636df’), ‘tf’: (‘ydshieh/vit-gpt2-coco-en’, ‘65636df’)}}, ‘type’: ‘multimodal’}
  • object-detection {‘impl’: <class ‘transformers.pipelines.object_detection.ObjectDetectionPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForObjectDetection’>,), ‘default’: {‘model’: {‘pt’: (‘facebook/detr-resnet-50’, ‘2729413’)}}, ‘type’: ‘multimodal’}
  • zero-shot-object-detection {‘impl’: <class ‘transformers.pipelines.zero_shot_object_detection.ZeroShotObjectDetectionPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForZeroShotObjectDetection’>,), ‘default’: {‘model’: {‘pt’: (‘google/owlvit-base-patch32’, ‘17740e1’)}}, ‘type’: ‘multimodal’}
  • depth-estimation {‘impl’: <class ‘transformers.pipelines.depth_estimation.DepthEstimationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForDepthEstimation’>,), ‘default’: {‘model’: {‘pt’: (‘Intel/dpt-large’, ‘e93beec’)}}, ‘type’: ‘image’}
  • video-classification {‘impl’: <class ‘transformers.pipelines.video_classification.VideoClassificationPipeline’>, ‘tf’: (), ‘pt’: (<class ‘transformers.models.auto.modeling_auto.AutoModelForVideoClassification’>,), ‘default’: {‘model’: {‘pt’: (‘MCG-NJU/videomae-base-finetuned-kinetics’, ‘4800870’)}}, ‘type’: ‘video’}

2. Tokenizer分词器

Tokenizer将过去繁琐的text-to-token的过程进行简化:
在这里插入图片描述

2.1 Tokenizer的使用方法

在这里插入图片描述

Step1 加载与保存

from transformers import AutoTokenizer

# 从HuggingFace加载,输入模型名称,即可加载对应的分词器
tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese")
"""
BertTokenizerFast(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True)
"""
# tokenizer 保存到本地
tokenizer.save_pretrained("本地文件夹路径")
''' 文件夹内的文件格式
('./roberta_tokenizer\\tokenizer_config.json',
 './roberta_tokenizer\\special_tokens_map.json',
 './roberta_tokenizer\\vocab.txt',
 './roberta_tokenizer\\added_tokens.json',
 './roberta_tokenizer\\tokenizer.json')
'''
# 从本地加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("本地文件夹路径")
"""
BertTokenizerFast(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True)
"""

Step2 句子分词 :

sen = "弱小的我也有大梦想!"
tokens = tokenizer.tokenize(sen)
# ['弱', '小', '的', '我', '也', '有', '大', '梦', '想', '!']

Step3 查看词典:

tokenizer.vocab
"""
{'湾': 3968,
 '訴': 6260,
 '##轶': 19824,
 '洞': 3822,
 ' ̄': 8100,
 '##劾': 14288,
 '##care': 11014,
 'asia': 8339,
 '##嗑': 14679,
 '##鹘': 20965,
 'washington': 12262,
 '##匕': 14321,
 '##樟': 16619,
 '癮': 4628,
 'day3': 11649,
 '##宵': 15213,
 '##弧': 15536,
 '##do': 8828,
 '詭': 6279,
 '3500': 9252,
 '124': 9377,
 '##価': 13957,
 '##玄': 17428,
 '##積': 18005,
 '##肝': 18555,
...
 '##维': 18392,
 '與': 5645,
 '##mark': 9882,
 '偽': 984,
 ...}
"""
tokenizer.vocab_size
# 21128

Step4 索引转换:

# 将词序列转换为id序列
ids = tokenizer.convert_tokens_to_ids(tokens)
ids
# [2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106]
# 将id序列转换为token序列
tokens = tokenizer.convert_ids_to_tokens(ids)
tokens
# ['弱', '小', '的', '我', '也', '有', '大', '梦', '想', '!']
# 将token序列转换为string
str_sen = tokenizer.convert_tokens_to_string(tokens)
str_sen
# '弱 小 的 我 也 有 大 梦 想!'

总结——更便捷的实现方式

# 将字符串转换为id序列,又称之为编码
ids = tokenizer.encode(sen, add_special_tokens=True)
ids
# [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102]
# 将id序列转换为字符串,又称之为解码
str_sen = tokenizer.decode(ids, skip_special_tokens=False)
str_sen
# '[CLS] 弱 小 的 我 也 有 大 梦 想! [SEP]'

Step5 填充与截断

# 填充
ids = tokenizer.encode(sen, padding="max_length", max_length=15)
ids
# [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0]
# 截断
ids = tokenizer.encode(sen, max_length=5, truncation=True)
ids
# [101, 2483, 2207, 4638, 102]

Step6 其他输入部分

ids = tokenizer.encode(sen, padding="max_length", max_length=15)
ids
# [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0]
attention_mask = [1 if idx != 0 else 0 for idx in ids]
token_type_ids = [0] * len(ids)
ids, attention_mask, token_type_ids
"""
([101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
"""

2.2 Tokenizer快速调用

tokenizer.encode_plus()tokenizer()效果相同

inputs = tokenizer.encode_plus(sen, padding="max_length", max_length=15)
inputs
"""
{'input_ids': [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0], 
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]}
"""
inputs = tokenizer(sen, padding="max_length", max_length=15)
inputs
"""
{'input_ids': [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0], 
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]}
"""

2.3 处理batch数据

sens = ["弱小的我也有大梦想",
        "有梦想谁都了不起",
        "追逐梦想的心,比梦想本身,更可贵"]
res = tokenizer(sens)
res
"""
{'input_ids': [[101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 102], [101, 3300, 3457, 2682, 6443, 6963, 749, 679, 6629, 102], [101, 6841, 6852, 3457, 2682, 4638, 2552, 8024, 3683, 3457, 2682, 3315, 6716, 8024, 3291, 1377, 6586, 102]], 
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
"""
%%time
# 单条循环处理
for i in range(1000):
    tokenizer(sen)
# CPU times: total: 15.6 ms
# Wall time: 32.5 ms

%%time
# 处理batch数据
sen_list = [sen] * 1000
res = tokenizer(sen_list)
# CPU times: total: 0 ns
# Wall time: 6 ms

2.4 Fast / Slow Tokenizer

在这里插入图片描述

sen = "弱小的我也有大Dreaming!"
fast_tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese")
fast_tokenizer
# BertTokenizerFast(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True)

inputs = fast_tokenizer(sen, return_offsets_mapping=True)
inputs
# {'input_ids': [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 10252, 8221, 106, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'offset_mapping': [(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 12), (12, 15), (15, 16), (0, 0)]}

inputs.word_ids()
# [None, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, None]
slow_tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese", use_fast=False)
slow_tokenizer
# BertTokenizer(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True)

3. Model模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1 模型加载与保存

在线下载: 会遇到HTTP连接超时

from transformers import AutoConfig, AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("hfl/rbt3", force_download=True)

离线下载 : 需要挂梯子自己进去下载,在本地创建文件夹

!git clone "https://huggingface.co/hfl/rbt3"
!git lfs clone "https://huggingface.co/hfl/rbt3" --include="*.bin"

离线加载

model = AutoModel.from_pretrained("本地文件夹")

模型加载参数

model = AutoModel.from_pretrained("本地文件夹")
model.config
"""
BertConfig {
  "_name_or_path": "rbt3",
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
...
  "transformers_version": "4.28.1",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
"""
config = AutoConfig.from_pretrained("./rbt3/")
config
"""
BertConfig {
  "_name_or_path": "rbt3",
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
...
  "transformers_version": "4.28.1",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
"""

3.2 模型调用

sen = "弱小的我也有大梦想!"
tokenizer = AutoTokenizer.from_pretrained("rbt3")
inputs = tokenizer(sen, return_tensors="pt")
inputs
"""
{'input_ids': tensor([[ 101, 2483, 2207, 4638, 2769,  738, 3300, 1920, 3457, 2682, 8013,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
"""

不带Model Head的模型调用

model = AutoModel.from_pretrained("rbt3", output_attentions=True)
output = model(**inputs)
output
"""
BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[ 0.6804,  0.6664,  0.7170,  ..., -0.4102,  0.7839, -0.0262],
         [-0.7378, -0.2748,  0.5034,  ..., -0.1359, -0.4331, -0.5874],
         [-0.0212,  0.5642,  0.1032,  ..., -0.3617,  0.4646, -0.4747],
         ...,
         [ 0.0853,  0.6679, -0.1757,  ..., -0.0942,  0.4664,  0.2925],
         [ 0.3336,  0.3224, -0.3355,  ..., -0.3262,  0.2532, -0.2507],
         [ 0.6761,  0.6688,  0.7154,  ..., -0.4083,  0.7824, -0.0224]]],
       grad_fn=<NativeLayerNormBackward0>), pooler_output=tensor([[-1.2646e-01, -9.8619e-01, -1.0000e+00, -9.8325e-01,  8.0238e-01,
         -6.6268e-02,  6.6919e-02,  1.4784e-01,  9.9451e-01,  9.9995e-01,
         -8.3051e-02, -1.0000e+00, -9.8865e-02,  9.9980e-01, -1.0000e+00,
          9.9993e-01,  9.8291e-01,  9.5363e-01, -9.9948e-01, -1.3219e-01,
         -9.9733e-01, -7.7934e-01,  1.0720e-01,  9.8040e-01,  9.9953e-01,
         -9.9939e-01, -9.9997e-01,  1.4967e-01, -8.7627e-01, -9.9996e-01,
         -9.9821e-01, -9.9999e-01,  1.9396e-01, -1.1277e-01,  9.9359e-01,
         -9.9153e-01,  4.4752e-02, -9.8731e-01, -9.9942e-01, -9.9982e-01,
          2.9360e-02,  9.9847e-01, -9.2014e-03,  9.9999e-01,  1.7111e-01,
          4.5071e-03,  9.9998e-01,  9.9467e-01,  4.9726e-03, -9.0707e-01,
          6.9056e-02, -1.8141e-01, -9.8831e-01,  9.9668e-01,  4.9800e-01,
          1.2997e-01,  9.9895e-01, -1.0000e+00, -9.9990e-01,  9.9478e-01,
         -9.9989e-01,  9.9906e-01,  9.9820e-01,  9.9990e-01, -6.8953e-01,
          9.9990e-01,  9.9987e-01,  9.4563e-01, -3.7660e-01, -1.0000e+00,
          1.3151e-01, -9.7371e-01, -9.9997e-01, -1.3228e-02, -2.9801e-01,
         -9.9985e-01,  9.9662e-01, -2.0004e-01,  9.9997e-01,  3.6876e-01,
         -9.9997e-01,  1.5462e-01,  1.9265e-01,  8.9871e-02,  9.9996e-01,
          9.9998e-01,  1.5184e-01, -8.9714e-01, -2.1646e-01, -9.9922e-01,
...
           1.7911e-02, 4.8672e-01],
          [4.0732e-01, 3.8137e-02, 9.6832e-03,  ..., 4.4490e-02,
           2.2997e-02, 4.0793e-01],
          [1.7047e-01, 3.6989e-02, 2.3646e-02,  ..., 4.6833e-02,
           2.5233e-01, 1.6721e-01]]]], grad_fn=<SoftmaxBackward0>)), cross_attentions=None)
"""
output.last_hidden_state.size()
# orch.Size([1, 12, 768])
len(inputs["input_ids"][0])
# 12

带Model Head的模型调用

from transformers import AutoModelForSequenceClassification, BertForSequenceClassification
clz_model = AutoModelForSequenceClassification.from_pretrained("rbt3", num_labels=10)
clz_model(**inputs)
# SequenceClassifierOutput(loss=None, logits=tensor([[-0.1776,  0.2208, -0.5060, -0.3938, -0.5837,  1.0171, -0.2616,  0.0495, 0.1728,  0.3047]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)
clz_model.config.num_labels
# 2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1019036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GitHub 曝出漏洞,或导致 4000 多个存储库遭受劫持攻击

The Hacker News 网站披露&#xff0c;安全研究员发现 GitHub 中存在一个新安全漏洞&#xff0c;该漏洞可能导致数千个存储库面临劫持攻击的风险。据悉&#xff0c;在 2023 年 3 月 1 日漏洞披露后&#xff0c;微软旗下的代码托管平台已于 2023 年 9 月 1 日解决了安全漏洞问题…

无涯教程-JavaScript - FACT函数

描述 The FACT function returns the factorial of a number. The factorial of a number is equal to 1&ast;2&ast;3&ast;...&ast; number. 语法 FACT (number)争论 Argument描述Required/OptionalNumberThe nonnegative number for which you want the f…

LeetCode 39. Combination Sum【回溯,剪枝】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

C#小知识

项目编译后复制文件到生成目录 方法1 对于单个文件&#xff0c;可以点击属性。输出目录里选择始终复制。 方法2 把项目中的ServerScripts复制到输出目录。 在项目设置中&#xff0c;生成事件里添加批处理 xcopy $(ProjectDir)ServerScripts\*.* $(TargetDir)ServerScrip…

cms之帝国cms安装

内容摘要 帝国网站管理系统&#xff0c;英文名称为EmpireCMS&#xff0c;简称“帝国CMS”&#xff0c;本文将介绍帝国网站管理系统的安装方法。 前言&#xff1a; 本文安装教程是以帝国CMS7.5版本为基础进行图文讲解。 各位看官&#xff0c;一定要按照每个步骤去执行&#xf…

人机中的事实与价值时空、排序

人机结合智能与事实价值融合分析确实是未来解决复杂疑难问题的基本策略之一。该策略利用人类智慧和机器智能相结合&#xff0c;结合有效的事实和价值分析方法&#xff0c;以更全面、准确、高效地解决问题。 通过人机结合&#xff0c;可以充分发挥人类的主观能动性、判断力和创造…

【Java 基础篇】Java 字节流详解:从入门到精通

Java中的字节流是处理二进制数据的关键工具之一。无论是文件操作、网络通信还是数据处理&#xff0c;字节流都发挥着重要作用。本文将从基础概念开始&#xff0c;深入探讨Java字节流的使用&#xff0c;旨在帮助初学者理解和掌握这一重要主题。 什么是字节流&#xff1f; 在Ja…

【JavaSE笔记】类和对象(万字详解)

一、前言 Java是一种广泛应用于各个领域的编程语言&#xff0c;它的面向对象编程范式使得它成为了当今软件开发的主要选择之一。通过面向对象编程&#xff0c;Java使程序员能够将代码组织成易于理解和维护的结构&#xff0c;并且在开发大型复杂的应用程序时提供了许多便利。 …

STM32单片机——DMA数据传输

STM32单片机——DMA数据传输 DMA相关概述实验一&#xff1a;内存到内存搬运Cubemx工程配置Hal库程序设计及实现固件库程序设计及实现 实验二&#xff1a;内存到外设&#xff08;DMA串口发送&#xff09;Cubemx工程配置Hal库程序设计及实现固件库程序设计 实验三&#xff1a;外设…

FPGA-结合协议时序实现UART收发器(六):仿真模块SIM_uart_drive_TB

FPGA-结合协议时序实现UART收发器&#xff08;六&#xff09;&#xff1a;仿真模块SIM_uart_drive_TB 仿真模块SIM_uart_drive_TB&#xff0c;仿真实现。 vivado联合modelsim进行仿真。 文章目录 FPGA-结合协议时序实现UART收发器&#xff08;六&#xff09;&#xff1a;仿真模…

2023-09-17 LeetCode每日一题(打家劫舍 II)

2023-09-17每日一题 一、题目编号 213. 打家劫舍 II二、题目链接 点击跳转到题目位置 三、题目描述 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房…

C#,《小白学程序》第二十六课:大数乘法(BigInteger Multiply)的Toom-Cook 3算法及源程序

凑数的&#xff0c;仅供参考。 1 文本格式 /// <summary> /// 《小白学程序》第二十六课&#xff1a;大数&#xff08;BigInteger&#xff09;的Toom-Cook 3乘法 /// Toom-Cook 3-Way Multiplication /// </summary> /// <param name"a"></par…

如何隐藏windows10系统任务栏右下角的语言输入法图标?

勾选“使用桌面语言栏(如果可用)”&#xff0c;任务栏的输入法图标立刻消失

【Java基础夯实】我消化后的ThreadLocal是怎样的?

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;CSDN实力新星&#xff0c;后端开发两年经验&#xff0c;曾担任甲方技术代表&#xff0c;业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…

面试题:jwt 是什么?java-jwt 呢?

文章目录 JWT概念JWT流程&#xff1a;JWT的构成JWT与开发语言JWT官网java-jwt产生加密Token解密Token获取负载信息并验证Token是否有效 JWT概念 JWT &#xff0c; 全写JSON Web Token, 是开放的行业标准RFC7591&#xff0c;用来实现端到端安全验证. 简单来说&#xff0c; 就是…

OpenCV Series : Target Box Outline Border

角点 P1 [0] (255, 000, 000) P2 [1] (000, 255, 000) P3 [2] (000, 000, 255) P4 [3] (000, 000, 000)垂直矩形框 rect cv2.minAreaRect(cnt)targetColor roi_colortargetThickness 1targetColor (255, 255, 255)if lineVerbose:if …

【斗破年番】紫研新形象,萧炎终成翻海印,救援月媚,三宗决战

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析斗破年番。 斗破苍穹年番动画更新了&#xff0c;小医仙帅气回归&#xff0c;萧炎紫妍成功进入山谷闭关苦修&#xff0c;美杜莎女王守护没多久&#xff0c;就因蛇人族求救离开。从官方公布的最新预告来看&#xff0c;萧炎紫…

地图结构 | 详解八叉树Octomap原理与Rviz可视化

目录 0 专栏介绍1 点云地图的局限性2 八叉树基本原理3 Octovis可视化4 点云转化octomap5 ROS Rviz可视化 0 专栏介绍 &#x1f525;附C/Python/Matlab全套代码&#x1f525;课程设计、毕业设计、创新竞赛必备&#xff01;详细介绍全局规划(图搜索、采样法、智能算法等)&#x…

Web 器学习笔记(基础)

Filter 过滤器 概念&#xff1a;表示过滤器&#xff0c;是 JavaWeb 三大组件&#xff08;Servlet、Filter、Listener&#xff09;之一 作用&#xff1a;顾名思义可以过滤资源的请求&#xff0c;并实现特殊的需求 Filter 接口及它核心的 doFilter() 方法&#xff08;执行前就是…

JVM 第一章:Java运行时数据区

目录 一.了解JVM 1.1什么是JVM 1.2JRE/JDK/JVM 1.3JVM的整体结构 二.Java运行时数据区 2.1程序计数器(PC寄存器) 2.2Java虚拟机栈&#xff08;Java Virtual Machine Stacks&#xff09; 2.2.1栈帧的组成 2.2.2问题辨析 2.2.3逃逸分析 ①栈上分配 ②标量分析 ③同步…