线性代数基础-矩阵

news2025/1/10 2:00:09

八、矩阵的基础概念

1.矩阵

我们忘掉之前行列式的一切,列一种全新的数表,虽然长得很像,但是大不相同,首先一个区别就是矩阵不能展开成一个值,这里不讨论矩阵的空间意义
{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

2.实矩阵、复矩阵

如果矩阵里全是实数,则是实矩阵,而元素是复数,是复矩阵

3.矩阵相等

行数列数相同,所有元素一一对应相等,记作
A = B A=B A=B

4.零矩阵

所有元素全为0,记作
O m ∗ n 或 O O_{m*n} 或O OmnO

5.负矩阵

对于 A m ∗ n ,它的负矩阵是 − A , 相当于矩阵内每个元素乘 ( − 1 ) 对于A_{m*n},它的负矩阵是 -A ,相当于矩阵内每个元素乘(-1) 对于Amn,它的负矩阵是A,相当于矩阵内每个元素乘(1)

A 3 ∗ 3 = ( a 0 0 0 a 0 0 0 a ) A_{3*3} =\begin{pmatrix} a & 0&0\\ 0 &a&0\\ 0&0&a\\ \end{pmatrix} A33= a000a000a

− A 3 ∗ 3 = ( − a 0 0 0 − a 0 0 0 − a ) -A_{3*3} = \begin{pmatrix} -a & 0&0\\ 0 &-a&0\\ 0&0&-a\\ \end{pmatrix} A33= a000a000a

6.n阶方阵

矩阵不一定是方的,但是如果是方的就叫方阵,行数或者列数就是阶数

7.三角矩阵,对角矩阵

要求是方阵
上三角,下三角矩阵与上三角下三角行列式定义相同,可以类比
对角矩阵也与行列式相同
A 3 ∗ 3 = ( a b b 0 a b 0 0 a ) A_{3*3} =\begin{pmatrix} a & b&b\\ 0 &a&b\\ 0&0&a\\ \end{pmatrix} A33= a00ba0bba

8.数量矩阵

前提是对角矩阵
主对角线全等于同一个常数a
A 3 ∗ 3 = ( a 0 0 0 a 0 0 0 a ) A_{3*3} =\begin{pmatrix} a & 0&0\\ 0 &a&0\\ 0&0&a\\ \end{pmatrix} A33= a000a000a

9.n阶单位矩阵

主对角线值全为1的矩阵
A 3 ∗ 3 = ( 1 0 0 0 1 0 0 0 1 ) A_{3*3} =\begin{pmatrix} 1 & 0&0\\ 0 &1&0\\ 0&0&1\\ \end{pmatrix} A33= 100010001

10.行矩阵、列矩阵

只有一行或者一列的矩阵
也可以叫行向量,列向量

九、矩阵的线性运算

矩阵的加法和数乘统称为矩阵的线性运算

1.矩阵加法

A_{3*3} =\begin{pmatrix}
a_{11} & a_{12}&a_{13}\
a_{21} & a_{22}&a_{23}\
a_{31} & a_{32}&a_{33}\
\end{pmatrix}

B_{3*3} =\begin{pmatrix}
b_{11} & b_{12}&b_{13}\
b_{21} & b_{22}&b_{23}\
b_{31} & b_{32}&b_{33}\
\end{pmatrix}

A_{33} + B_{33} =
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12}&a_{13}+b_{13}\
a_{21}+b_{21} & a_{22}+b_{22}&a_{23}+b_{23}\
a_{31}+b_{31}& a_{32}+b_{32}&a_{33}+b_{33}\
\end{pmatrix}

2.交换率

A + B = B + A A +B = B+ A A+B=B+A

3.结合率

( A + B ) + C = A + ( B + C ) (A+B)+C = A+(B+C) A+B+C=A+B+C

4.特殊运算

A + O = A A + ( − A ) = O A+ O = A\\ A+ (-A) = O A+O=AA+(A)=O

5.数量乘法

A m ∗ n = ( a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n . . . . . . . . . . . . . . . a n 1 a n 2 . . . . . . a n n ) A_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ ...&...&...&...&...\\ a_{n1}&a_{n2}&...&...&a_{nn}\\ \end{pmatrix} Amn= a11a21...an1a12a22...an2a13a23..................a1na2n...ann

λ ∗ A m ∗ n = ( λ a 11 λ a 12 . . . λ a 1 n λ a 21 λ a 22 . . . λ a 2 n . . . . . . . . . . . . λ a n 1 λ a n 2 . . . λ a n n ) \lambda *A_{m*n} =\begin{pmatrix} \lambda a_{11} & \lambda a_{12} &...& \lambda a_{1n}\\ \lambda a_{21} & \lambda a_{22}&...& \lambda a_{2n}\\ ...&...&...&...\\ \lambda a_{n1}& \lambda a_{n2}&...& \lambda a_{nn}\\ \end{pmatrix} λAmn= λa11λa21...λan1λa12λa22...λan2............λa1nλa2n...λann

十、矩阵的乘法

对于每个矩阵乘法,一定有以下规则
A i ∗ k ∗ B k ∗ j = C i ∗ j A{i*k} * B{k * j} = C{i*j} AikBkj=Cij
矩阵乘法的前提是A矩阵的列数,必须等于B的行数,得到新矩阵的行数为A的行数,列数为B的列数。

1.现实记忆法(多存在于国内教材)

把A矩阵的四个行比作四个班级每一行分别是对三种产品的需求数量
而B矩阵的每一列,他们认为是不同的商家,列中的元素正好是价格

A 4 ∗ 3 = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 ) ( 每行存储的是每个班级对几种产品的需求数量 ) A_{4*3} =\begin{pmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22}&a_{23}\\ a_{31} & a_{32}&a_{33}\\ a_{41} & a_{42}&a_{43}\\ \end{pmatrix} (每行存储的是每个班级对几种产品的需求数量) A43= a11a21a31a41a12a22a32a42a13a23a33a43 (每行存储的是每个班级对几种产品的需求数量)

B 3 ∗ 2 = ( b 11 b 12 b 21 b 22 b 31 b 32 ) ( 每列存储的是每个商家几种产品的价格 ) B_{3*2} =\begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22}\\ b_{31} & b_{32}\\ \end{pmatrix} (每列存储的是每个商家几种产品的价格) B32= b11b21b31b12b22b32 (每列存储的是每个商家几种产品的价格)

C 4 ∗ 2 = A 4 ∗ 3 ∗ B 3 ∗ 2 = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 ) ∗ ( b 11 b 12 b 21 b 22 b 31 b 32 ) C_{4*2} = A_{4*3} * B_{3*2} =\begin{pmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22}&a_{23}\\ a_{31} & a_{32}&a_{33}\\ a_{41} & a_{42}&a_{43}\\ \end{pmatrix}*\begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22}\\ b_{31} & b_{32}\\ \end{pmatrix} C42=A43B32= a11a21a31a41a12a22a32a42a13a23a33a43 b11b21b31b12b22b32
得到的是一个每个班级在每个商家购买完所需商品的总花销表
C 4 ∗ 2 = ( a 11 ∗ b 11 + a 12 ∗ b 21 + a 13 ∗ b 31 a 11 ∗ b 12 + a 12 ∗ b 22 + a 13 ∗ b 32 a 21 ∗ b 11 + a 22 ∗ b 21 + a 23 ∗ b 31 a 21 ∗ b 12 + a 22 ∗ b 22 + a 23 ∗ b 32 a 31 ∗ b 11 + a 32 ∗ b 21 + a 33 ∗ b 31 a 31 ∗ b 12 + a 32 ∗ b 22 + a 33 ∗ b 32 a 41 ∗ b 11 + a 42 ∗ b 21 + a 43 ∗ b 31 a 41 ∗ b 12 + a 42 ∗ b 22 + a 43 ∗ b 32 ) C_{4*2} =\begin{pmatrix} a_{11}*b_{11}+a_{12}*b_{21} +a_{13}*b_{31}& a_{11}*b_{12}+a_{12}*b_{22} +a_{13}*b_{32}\\ a_{21}*b_{11}+a_{22}*b_{21} +a_{23}*b_{31} & a_{21}*b_{12}+a_{22}*b_{22} +a_{23}*b_{32} \\ a_{31}*b_{11}+a_{32}*b_{21} +a_{33}*b_{31}& a_{31}*b_{12}+a_{32}*b_{22} +a_{33}*b_{32}\\ a_{41}*b_{11}+a_{42}*b_{21} +a_{43}*b_{31} &a_{41}*b_{12}+a_{42}*b_{22} +a_{43}*b_{32}\\ \end{pmatrix} C42= a11b11+a12b21+a13b31a21b11+a22b21+a23b31a31b11+a32b21+a33b31a41b11+a42b21+a43b31a11b12+a12b22+a13b32a21b12+a22b22+a23b32a31b12+a32b22+a33b32a41b12+a42b22+a43b32

公式比较复杂,相当于这个过程

  • A的第一行分别对应乘B的第一列,写到C的第一列
  • A的第二行分别对应乘B的第一列,写到C的第一列
  • A的第三行分别对应乘B的第一列,写到C的第一列
  • A的第四行分别对应乘B的第一列,写到C的第一列

  • A的第一行分别对应乘B的第二列,写到C的第二列
  • A的第二行分别对应乘B的第二列,写到C的第二列
  • A的第三行分别对应乘B的第二列,写到C的第二列
  • A的第四行分别对应乘B的第二列,写到C的第二列

1. 需要注意乘法的前提条件:A的列数 = B的行数
2. AB是A左乘B,也可以是B右乘A,AB与BA结果不同

2.另一种记忆方法

我们以更简单的矩阵举例:
A 2 ∗ 2 = ( 1 2 2 3 ) A_{2*2} =\begin{pmatrix} 1 &2\\ 2& 3\\ \end{pmatrix} A22=(1223)

B 2 ∗ 1 = ( 1 2 ) B_{2*1} =\begin{pmatrix} 1 \\ 2\\ \end{pmatrix} B21=(12)

很容易得出

C 2 ∗ 1 = A 2 ∗ 2 ∗ B 2 ∗ 1 = ( 1 ∗ 1 + 2 ∗ 2 2 ∗ 1 + 3 ∗ 2 ) = ( 5 8 ) C_{2*1} =A_{2*2} *B_{2*1}=\begin{pmatrix} 1*1+2*2\\ 2*1+3*2\\ \end{pmatrix} = \begin{pmatrix} 5\\ 8\\ \end{pmatrix} C21=A22B21=(11+2221+32)=(58)
可以理解为这样的一个操作,A第一列*B第一行 + A第二列 * B第二行
C 2 ∗ 1 = A i 1 ∗ B 1 j + A i 2 ∗ B 2 j C_{2*1} = A_{i1}*B_{1j} +A_{i2}* B_{2j} C21=Ai1B1j+Ai2B2j

我们拓展到更高阶的矩阵
A 3 ∗ 3 = ( 1 2 3 2 3 4 1 4 6 ) A_{3*3} =\begin{pmatrix} 1 &2&3\\ 2& 3&4\\ 1& 4&6\\ \end{pmatrix} A33= 121234346

B 3 ∗ 2 = ( 2 2 1 3 1 2 ) B_{3*2} =\begin{pmatrix} 2 &2\\ 1& 3\\ 1& 2\\ \end{pmatrix} B32= 211232

C 3 ∗ 2 = ( 1 2 3 2 3 4 1 4 6 ) ∗ ( 2 2 1 3 1 2 ) C_{3*2} =\begin{pmatrix} 1 &2&3\\ 2& 3&4\\ 1& 4&6\\ \end{pmatrix} *\begin{pmatrix} 2 &2\\ 1& 3\\ 1& 2\\ \end{pmatrix} C32= 121234346 211232

C 3 ∗ 2 = ( 1 2 1 ) ∗ ( 2 2 ) + ( 2 3 4 ) ∗ ( 1 3 ) + ( 3 4 6 ) ∗ ( 1 2 ) C_{3*2} = \begin{pmatrix} 1 \\ 2\\ 1\\ \end{pmatrix} *\begin{pmatrix} 2 &2\\ \end{pmatrix}+\begin{pmatrix} 2 \\ 3\\ 4\\ \end{pmatrix}*\begin{pmatrix} 1&3\\ \end{pmatrix}+\begin{pmatrix} 3 \\ 4\\ 6\\ \end{pmatrix}*\begin{pmatrix} 1 &2\\ \end{pmatrix} C32= 121 (22)+ 234 (13)+ 346 (12)

C 3 ∗ 2 = ( 2 2 4 4 2 2 ) + ( 2 6 3 9 4 12 ) + ( 3 6 4 8 6 12 ) = ( 7 14 11 21 12 26 ) C_{3*2} =\begin{pmatrix} 2&2 \\ 4&4\\ 2&2\\ \end{pmatrix} + \begin{pmatrix} 2&6 \\ 3&9\\ 4&12\\ \end{pmatrix}+ \begin{pmatrix} 3&6 \\ 4&8\\ 6&12\\ \end{pmatrix} = \begin{pmatrix} 7&14 \\ 11&21\\ 12&26\\ \end{pmatrix} C32= 242242 + 2346912 + 3466812 = 71112142126

C 3 ∗ 2 = A i 1 ∗ B 1 j + A i 2 ∗ B 2 j + A i 3 ∗ B 3 j C_{3*2} = A_{i1}*B_{1j} +A_{i2}* B_{2j}+A_{i3}* B_{3j} C32=Ai1B1j+Ai2B2j+Ai3B3j

可以浅显的理解为A的第x列 * B的第x行 的累加求和

在这里插入图片描述
对于矩阵内每个元素:都有计算公式
在这里插入图片描述

十一、矩阵乘法的运算性质

1.结合律

A ( B C ) = ( A B ) C A(BC) = (AB)C A(BC)=(AB)C

2.分配律

A ( B + C ) = A B + A C λ ( A B ) = A ( λ B ) = ( λ A ) B A(B+C) = AB+AC\\ \lambda (AB) = A(\lambda B) = (\lambda A)B A(B+C)=AB+ACλ(AB)=A(λB)=(λA)B

3.与单位阵的运算

E m ∗ A m ∗ n = A m ∗ n ∗ E n = A m ∗ n E_m * A_{m*n} = A_{m*n} *E_n = A_{m*n} EmAmn=AmnEn=Amn

4.可交换

一般情况下 A B = B A 如果 A B = B A ,则称 A 与 B 可换 一般情况下AB \cancel{=} BA\\ 如果AB=BA,则称A与B可换 一般情况下AB= BA如果AB=BA,则称AB可换

5.转置矩阵

同行列式转置几乎一致(参考行列式转置),记作
A T 或 A ′ A^T 或A' ATA
转置之后的矩阵和原矩阵不相等,这里与行列式有差别,有如下性质

( A T ) T = A ( A + B ) T = A T + B T ( λ A ) T = λ A T ( A B ) T = B T A T (A^T )^T = A\\ (A+B)^T = A^T + B^T \\ (\lambda A)^T = \lambda A^T\\ (AB)^T = B^T A^T (AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT

6.对称矩阵

条件:

  • A是n阶方阵
  • A的转置 = A

性质:

A 是对称矩阵,则 k 倍的 A 也是对称矩阵 A , B 均是对称矩阵, A + B , A − B 也是对称矩阵 A , B 是对称矩阵, A B = B A , A B 也是对称矩阵 A是对称矩阵,则k倍的A也是对称矩阵 A,B均是对称矩阵,A+B,A-B也是对称矩阵 A,B是对称矩阵,AB=BA,AB也是对称矩阵 A是对称矩阵,则k倍的A也是对称矩阵AB均是对称矩阵,A+B,AB也是对称矩阵A,B是对称矩阵,AB=BAAB也是对称矩阵

7.反对称矩阵

A T = − A A^T = -A AT=A
性质:主对角线元素全为0

8.n阶方阵的特殊运算

A是N阶方阵,有如下运算

A 0 = E n A n = A A . . . A ( k 个 A ) A k A l = A k + l ( A k ) l = A k l E k = E A^0 = E_n\\ A^n = AA...A(k个A)\\ A^kA^l = A^{k+l}\\ (A^{k})^l = A^{kl}\\ E^k = E A0=EnAn=AA...AkAAkAl=Ak+l(Ak)l=AklEk=E

对于N阶方阵A,B

( A B ) k = A k B k ( A + B ) 2 = A 2 + 2 A B + B 2 (AB)^k \cancel{=} A^kB^k\\ (A+B)^2 \cancel{=} A^2+2AB+B^2 ABk= AkBk(A+B)2= A2+2AB+B2

十二、矩阵与行列式

  • 只有n阶方阵才有相应行列式,否则没有
  • A的行列式记作

∣ A ∣ 或 d e t A |A| 或det A AdetA

性质:设A为n阶方阵

∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |A^T| = |A|\\ |\lambda A| = \lambda ^n |A|\\ |AB| = |A| |B| AT=AλA=λnAAB=A∣∣B

解释:

  1. 因为行列式的转置和原来相等,那么转置矩阵变成行列式还是跟原来相等
  2. 矩阵乘一个常数是所有元素都乘常数,但是行列式乘常数只能乘进一行
  3. 可以通过数学归纳或者拉普拉斯公式证明

十三、逆矩阵、伴随矩阵、奇异矩阵

1.逆矩阵

A ∗ B = B ∗ A = E n A * B = B*A= E_n AB=BA=En
则称B为A的逆矩阵,简称逆阵,记作
B = A − 1 B = A^{-1} B=A1
有如下的性质

A ∗ A − 1 = A − 1 ∗ A = E n A * A^{-1} = A^{-1} *A= E_n AA1=A1A=En

( A − 1 ) − 1 = A A 可逆, A T 也可逆, ( A T ) − 1 = ( A − 1 ) T A 可逆且 k = 0 , 则 k A 可逆 , ( k A ) − 1 = 1 k A − 1 A , B 同阶且可逆,则 A B 也可逆,( A B ) − 1 = B − 1 A − 1 ( 可推广到 n 个 ) 若 A 可逆 , ∣ A − 1 ∣ = ∣ A ∣ − 1 (A^{-1})^{-1} = A\\ A可逆,A^T也可逆,(A^T)^{-1} = (A^{-1})^T\\ A可逆且k \cancel{=}0,则kA可逆,(kA)^{-1 } = \frac{1}{k}A^{-1}\\ A,B同阶且可逆,则AB也可逆,(AB)^{-1}=B^{-1}A^{-1} (可推广到n个)\\ 若A可逆,|A^{-1}| = |A|^{-1} (A1)1=AA可逆,AT也可逆,(AT)1=(A1)TA可逆且k= 0,kA可逆,(kA)1=k1A1A,B同阶且可逆,则AB也可逆,(AB1=B1A1(可推广到n)A可逆,A1=A1

2.奇异矩阵与非奇异矩阵

奇异矩阵也叫退化矩阵,非奇异矩阵才可逆,奇异矩阵不可逆
∣ A ∣ ≠ 0 非奇异矩阵 ∣ A ∣ = 0 奇异矩阵 |A| \not= 0 非奇异矩阵\\ |A| =0奇异矩阵 A=0非奇异矩阵A=0奇异矩阵

3.伴随矩阵

A 3 ∗ 3 = ( 1 2 3 2 2 1 3 4 3 ) A_{3*3} =\begin{pmatrix} 1 & 2&3\\ 2 &2&1\\ 3&4&3\\ \end{pmatrix} A33= 123224313
还记得代数余子式吗,划掉所在行列的行列式,乘-1^(i+j)
Astar就等于对每个矩阵的位置求一个代数余子式的值,然后放在矩阵的同位置

4.伴随矩阵求逆矩阵

充要条件:
∣ A ∣ ≠ 0 , A − 1 = 1 ∣ A ∣ A ∗ |A| \not=0,A^{-1} = \frac{1}{|A|} A^* A=0A1=A1A

推论:
A B = E ,则 A , B 互为逆 AB = E,则A,B互为逆 AB=E,则AB互为逆

十四、矩阵的初等变换

1.初等变换

我们还是把矩阵想象为方程组,方程组能干的,矩阵就能这么做

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

下面三种方式叫做初等行变换

  1. 交换任意两行
  2. 任意一行乘k
  3. 某一行乘k加到另一行

行换成列,就是初等列变换,统称初等变换

2.矩阵等价

若A可以经过若干次初等变换到B,则称A与B等价,记作 A~B

  • 具备传递性,A~B ,B~C ,则A~C
  • 具备对称性 A~B ,B~A
  • 具备反身性,A~A

3.行阶梯矩阵

A 4 ∗ 4 = ( 1 2 3 3 0̸ 3 4 5 0̸ 0̸ 2 1 0̸ 0̸ 0̸ 0̸ ) A_{4*4} =\begin{pmatrix} 1 &2&3&3\\ \not0& 3&4&5\\ \not0& \not0&2&1\\ \not0&\not0&\not0&\not0 \end{pmatrix} A44= 1000230034203510
如果一个矩阵的零行都位于非零行下方,并且每个非零行左起第一个非零元素的列数由上而下严格递增,则称该矩阵为行阶梯矩阵
最简行阶梯矩阵:对于一个行阶梯矩阵,如果每行左起第一个非零元素元素都是1,并且这些1所在的列其他元素都是0,则称最简行阶梯矩阵(行最简形矩阵)
A 4 ∗ 4 = ( 1 0 0 0 0 1 0 0 0 0 1 3 0 0 0 0 ) A_{4*4} =\begin{pmatrix} 1 &0&0&0\\ 0& 1&0&0\\ 0& 0&1&3\\ 0&0&0&0 \end{pmatrix} A44= 1000010000100030
再对A进行初等列变换,得到A的标准型
A 4 ∗ 4 = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ) A_{4*4} =\begin{pmatrix} 1 &0&0&0\\ 0& 1&0&0\\ 0& 0&1&0\\ 0&0&0&0 \end{pmatrix} A44= 1000010000100000

定义m,n,r,其中mn为行数列数
而该标准型左上角的单位阵可以由r确定,所以三个数就可以表示出标准型
E r = ( 1 0 0 0 1 0 0 0 1 ) E_r = \begin{pmatrix} 1 &0&0\\ 0& 1&0\\ 0& 0&1\\ \end{pmatrix} Er= 100010001
所有与A等价的矩阵组成一个等价类标准型是这个类中最简单的矩阵

十五、初等矩阵与步骤记录

1.定理

定义:由单位阵E经过一次初等变换形成的矩阵,叫做初等矩阵

定理2

  • 对A(m*n)进行一次初等行变换,相当于在A左侧乘相应的m阶初等矩阵

  • 对A(m*n)进行一次初等列变换,相当于在A右侧乘相应的n阶初等矩阵

因为这个定理,我们可以只需要记录下来从A到E变换过程的所有初等矩阵再对E来一遍就可以求出A的逆矩阵

2.初等变换法求逆矩阵:

A 3 ∗ 3 = ( 1 1 − 1 3 2 − 2 5 − 2 1 ) A_{3*3} =\begin{pmatrix} 1& 1&-1\\ 3 & 2&-2\\ 5& -2&1\\ \end{pmatrix} A33= 135122121

= > ( 1 1 − 1 ∣ 1 0 0 3 2 − 2 ∣ 0 1 0 5 − 2 1 ∣ 0 0 1 ) =>\begin{pmatrix} 1& 1&-1&| & 1&0&0\\ 3 & 2&-2&|&0&1&0\\ 5& -2&1&|&0&0&1\\ \end{pmatrix} => 135122121100010001

= > ( 1 0 0 ∣ − 2 1 0 0 1 0 ∣ − 13 6 − 1 0 0 1 ∣ − 16 7 − 1 ) =>\begin{pmatrix} 1& 0&0&| & -2&1&0\\ 0 & 1&0&|&-13&6&-1\\ 0& 0&1&|&-16&7&-1\\ \end{pmatrix} => 10001000121316167011

3.初等矩阵的性质

性质:

  • 初等矩阵都可逆,逆矩阵仍是初等矩阵
  • 初等矩阵的转置还是初等矩阵

十六、矩阵的秩

1.k阶子式

在矩阵A中,任取K个行K个列,交叉处的元素不改变相对位置形成的新的k阶行列式

2.矩阵的秩

  • 有一个不等于0的 r 阶子式
  • 所有 r+1 阶子式等于0
    满足这两个条件的子式叫做最高阶非零子式r称为矩阵的秩

性质:

R ( A ) = R ( A T ) = R ( k A ) ( 常数 k ≠ 0 ) 存在 x 阶子式不为 0 , R ( A ) > = s 所有 t 阶子式为 0 , R ( A ) < t A 为 n 阶方阵, A 为奇异矩阵的充要条件 R ( A ) = n R(A) = R(A^T) = R(kA) (常数k \not=0)\\ 存在x阶子式不为0,R(A)>=s\\ 所有t阶子式为0,R(A)<t\\ A为n阶方阵,A为奇异矩阵的充要条件R(A) = n RA=R(AT)=R(kA)(常数k=0)存在x阶子式不为0R(A)>=s所有t阶子式为0R(A)<tAn阶方阵,A为奇异矩阵的充要条件R(A)=n

3.满秩矩阵、降秩矩阵

R(A) = min(m , n) 称为满秩矩阵,否则为降秩矩阵

4.求矩阵的秩

  1. 按定义
  2. 初等行变换到行阶梯矩阵,非零行的个数为R的值

5.矩阵秩的性质

A为mn阶矩阵,B为nk阶矩阵

(1).性质1

C ( m + k ) ∗ ( n + l ) = ( A O O B ) C_{(m+k)*(n+l)} =\begin{pmatrix} A& O\\ O & B\\ \end{pmatrix} C(m+k)(n+l=(AOOB)
R ( C ) = R ( A ) + R ( B ) R(C) = R(A) + R(B) R(C)=R(A)+R(B)

(2).性质2

C ( m + k ) ∗ ( n + l ) = ( A O C B ) C_{(m+k)*(n+l)} =\begin{pmatrix} A& O\\ C & B\\ \end{pmatrix} C(m+k)(n+l=(ACOB)
Q ( m + k ) ∗ ( n + l ) = ( A D O B ) Q_{(m+k)*(n+l)} =\begin{pmatrix} A& D\\ O & B\\ \end{pmatrix} Q(m+k)(n+l=(AODB)
R ( C ) > = R ( A ) + R ( B ) R ( Q ) > = R ( A ) + R ( B ) R(C) >=R(A) + R(B)\\ R(Q) >=R(A) + R(B) R(C)>=R(A)+R(B)R(Q)>=R(A)+R(B)

(3).性质3

R ( A ) + R ( B ) < = R ( A + B ) R(A)+R(B)<=R(A+B) RA+RB<=R(A+B)

(4).性质4

R ( A B ) < = m i n { R ( A ) , R ( b ) } R(AB)<=min\{R(A),R(b)\} R(AB)<=min{R(A),R(b)}

(5).性质5

R ( A ) + R ( B ) − n < = R ( A B ) R(A)+R(B)-n<=R(AB) R(A)+R(B)n<=R(AB)

(6).性质6

A B = O , R ( A ) + R ( B ) < n AB = O,R(A)+R(B)<n AB=O,RA+RB<n

十七、分块矩阵

在这里插入图片描述
分块矩阵就是随意切成n块,然后再算
它把子矩阵作为元素,运算性质和矩阵相同

分块对角矩阵:若 A i A_i Ai都是方阵,则A称为对角分块矩阵
A 3 ∗ 3 = ( A 1 A 2 . . . A s ) A_{3*3} =\begin{pmatrix} A_1& &\\ & A_2&\\ & &...&\\ & &&A_s\\ \end{pmatrix} A33= A1A2...As

尽量选择良好的分块,可以提高效率
A 3 ∗ 3 = ( 9 0 0 0 2 1 0 0 0 0 3 4 0 0 0 2 ) = ( 9 0 ∣ 0 0 2 1 ∣ 0 0 − − − − − 0 0 ∣ 3 4 0 0 ∣ 0 2 ) A_{3*3} =\begin{pmatrix} 9& 0&0&0\\ 2&1&0&0\\ 0&0 &3&4\\ 0& 0&0&2\\ \end{pmatrix} = \begin{pmatrix} 9& 0&|&0&0\\ 2&1&|&0&0\\ -&-&-&-&-\\ 0&0 &|&3&4\\ 0& 0&|&0&2\\ \end{pmatrix} A33= 9200010000300042 = 9200010000300042

十八、线性方程组

1.非齐次线性方程组

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

2.齐次线性方程组

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = 0 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = 0 \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= 0 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= 0 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n=0 \end{cases} a11x1+a12x2+a13x3+...+a1nxn=0a21x1+a22x2+a23x3+...+a2nxn=0...an1x1+an2x2+an3x3+...+annxn=0
简单来看就是b全是0的非齐次

3.系数矩阵与增广矩阵

A x = b x 称为未知数向量, b 为常数项向量 A x = b\\ x称为未知数向量,b为常数项向量 Ax=bx称为未知数向量,b为常数项向量
有一个方程组,如下
{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn
该方程组的系数矩阵为:
A m ∗ n = ( a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n a 31 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n a n 1 a n 2 . . . a n ( n − 1 ) a n n ) A_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ a_{31}&a_{32}&a_{33}&...&a_{3n}\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}\\ \end{pmatrix} Amn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nann

该方程组的增广矩阵为:
A ~ m ∗ n = ( a 11 a 12 a 13 . . . a 1 n b 1 a 21 a 22 a 23 . . . a 2 n b 2 a 31 a 32 a 33 . . . a 3 n b 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n b n − 1 a n 1 a n 2 . . . a n ( n − 1 ) a n n b n ) \widetilde{A}_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}&b_1\\ a_{21} & a_{22}&a_{23}&...&a_{2n}&b_2\\ a_{31}&a_{32}&a_{33}&...&a_{3n}&b_3\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}&b_{n-1}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}&b_n\\ \end{pmatrix} A mn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nannb1b2b3bn1bn

4.线性方程组的解

满足线性方程组的一组数x1 =k1,x2 = k2…,叫做线性方程组的解或者特解
写成向量形式,叫做线性方程组的解向量,记作
x = ( k 1 , k 2 , . . . k n ) T x = (k_1,k_2,...k_n)^T x=(k1,k2,...kn)T

全体解向量的集合叫做解集,求解集的过程叫解线性方程组
如果两个线性方程组结集相同,称他们为同解线性方程组
表达线性方程组全部解的表达式,称为通解

5.高斯消元法解线性方程组

求解非齐次线性方程组 { x 1 − 2 x 2 + 3 x 3 − x 4 = 1 3 x 1 − x 2 + 5 x 3 − 3 x 4 = 2 2 x 1 + x 2 + 2 x 3 − 2 x 4 = 3 求解非齐次线性方程组\begin{cases} x_1 -2 x_2+3x_3 -x_4= 1 \\ 3x_1 - x_2+5x_3 -3x_4= 2 \\ 2x_1 +x_2+2x_3 -2x_4=3 \end{cases} 求解非齐次线性方程组 x12x2+3x3x4=13x1x2+5x33x4=22x1+x2+2x32x4=3

A ~ = ( 1 − 2 3 − 1 ∣ 1 3 − 1 5 − 3 ∣ − 1 2 1 2 − 2 ∣ − 2 ) = > ( 1 − 2 3 − 1 ∣ 1 0 5 − 4 0 ∣ − 1 0 0 0 0 ∣ − 2 ) = B ~ \widetilde A =\begin{pmatrix} 1 & -2&3&-1&|&1\\ 3 & -1&5&-3&|&-1\\ 2&1&2&-2&|&-2\\ \end{pmatrix} = >\begin{pmatrix} 1 & -2&3&-1&|&1\\ 0& 5&-4&0&|&-1\\ 0&0&0&0&|&-2\\ \end{pmatrix} = \widetilde B A = 132211352132112 => 100250340100112 =B

{ x 1 = 1 + 2 x 2 − 3 x 3 + x 4 x 2 = ( 2 + 4 x 3 ) / 5 0 = − 2 \begin{cases} x_1 = 1+2 x_2-3x_3 +x_4 \\ x_2=( 2 +4x_3)/5\\ 0=-2 \end{cases} x1=1+2x23x3+x4x2=2+4x3/50=2

显然第三个方程矛盾,该方程组无解
步骤如下:

  • 写出增广矩阵
  • 初等行变换为行阶梯矩阵
  • 取每行首个非零元素对应x作为因变量

6.线性方程组解与秩的关系

(1)对于齐次/非齐次方程组

R ( A ) < R ( A ~ ) = > 无解 R ( A ) = R = n ( A ~ ) = > 有唯一解 R ( A ) = R < n ( A ~ ) = > 有无穷多解 R(A)<R(\widetilde A)=>无解\\ R(A)=R =n(\widetilde A)=>有唯一解\\ R(A)=R <n(\widetilde A)=>有无穷多解 RA<RA =>无解RA=R=nA =>有唯一解RA=R<nA =>有无穷多解

(2)对于齐次方程组

R ( A ) = n    = > 有唯一解,只有零解 R ( A ) < n    = > 有无穷多解,有非零解 R(A) =n \space \space =>有唯一解,只有零解\\ R(A)<n \space \space =>有无穷多解,有非零解 R(A)=n  =>有唯一解,只有零解R(A)<n  =>有无穷多解,有非零解

当齐次方程组的系数矩阵为方阵时,行列式为0说明R(A)<n

1. 任何方阵都可以通过初等行变换转化为上三角阵.
2. 当且仅当主对角线上的元素中有0,上三角阵的行列式为0.
3. n阶上三角阵(行阶梯矩阵)的秩 = n - 主对角线上0的个数.

十九、向量与线性

1.向量

只有一行的矩阵称为行向量,一列的矩阵称为列向量
α = ( 1 2 3 ) , β = ( 1 2 3 ) \alpha = \begin{pmatrix} 1 \\ 2\\ 3 \end{pmatrix},\beta = \begin{pmatrix} 1 &2&3\\ \end{pmatrix} α= 123 ,β=(123)
元素个数n称为维数,而第i个元素称为向量的第i个分量

2.向量组

若干个同维的列(行)向量所组成的集合称为向量组
A n ∗ m = ( α 1 , α 2 , . . . α m ) A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m) Anm=(α1,α2,...αm)

3.线性组合

对于 A n ∗ m = ( α 1 , α 2 , . . . α m ) ,实数 ( k 1 , k 2 . . . k m ) k 1 α 1 + k 2 α 2 + . . . + k m α m 称为向量组 A 的线性组合 ( k 1 , k 2 . . . k m ) 称为这个向量组的系数 对于A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m),实数(k_1,k_2...k_m)\\ k_1\alpha_1 + k_2\alpha_2 +...+k_m\alpha_m称为向量组A的线性组合\\ (k_1,k_2...k_m)称为这个向量组的系数 对于Anm=(α1,α2,...αm),实数(k1,k2...km)k1α1+k2α2+...+kmαm称为向量组A的线性组合(k1,k2...km)称为这个向量组的系数

简单来说,就是把里面的向量随便乘一堆非线性的常量系数加一起,就是线性组合

4.线性表示

如果A的通过线性组合,能表示出β,我们称β是向量组A的线性组合,或者β可以被A线性表示
如果有A,B两个向量组,B中每个向量都能被A线性表示,称向量组B可以被A线性表示
A,B可以相互线性表示,则记作A~B,AB等价

β 可以被 A 线性表示 < = > R ( A ) = R ( A    β ) = m B 可以被 A 表示 < = > R ( A    B ) = R ( A ) = > R ( A ) > = R ( B ) A 等价于 B < = > R ( A ) = R ( B ) = R ( A    B ) β可以被A线性表示<=>R(A) = R(A \space \space β) = m\\ B可以被A表示 <=> R(A\space \space B) = R(A)=>R(A)>=R(B)\\ A 等价于B <=> R(A) = R(B) = R(A\space \space B) β可以被A线性表示<=>R(A)=R(A  β)=mB可以被A表示<=>R(A  B)=R(A)=>R(A)>=R(B)A等价于B<=>R(A)=R(B)=R(A  B)

5.线性相关

对于 A n ∗ m = ( α 1 , α 2 , . . . α m ) ,存在实数 ( k 1 , k 2 . . . k m ) 使 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 则称 A 线性相关,否则称 A 线性无关 对于A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m),存在实数(k_1,k_2...k_m)\\ 使k_1\alpha_1 + k_2\alpha_2 +...+k_m\alpha_m = 0\\ 则称A线性相关,否则称A线性无关 对于Anm=(α1,α2,...αm),存在实数(k1,k2...km)使k1α1+k2α2+...+kmαm=0则称A线性相关,否则称A线性无关

对于向量组 A A A而言
A 线性无关 < = > R ( A ) = m A 线性相关 < = > R ( A ) < m A线性无关<=>R(A) = m\\ A线性相关<=>R(A)<m A线性无关<=>R(A)=mA线性相关<=>R(A)<m

  • 推论:m个n维向量组成向量组,n<m时一定线性相关,n+1个n维向量一定相关

  • 推论:包含零向量的向量组一定线性相关

    • 注意:若向量组只有一个向量,向量线性相关的充要条件是这个向量为0向量
    • 注意:若向量组只有两个向量,线性相关的充要条件是共线,三个共面
  • 定理6:若A中至少有一个向量可以由其他向量表示<=>A线性相关

  • 定理7:A线性无关,而向量组(A β)线性相关,则β可以被A唯一表示

  • 定理8:A中有部分向量线性相关,则A线性相关,A线性无关,任意部分向量线性无关

  • 定理9:若A能被B线性表示,且A的向量数量比B多,A线性相关

    • 推论:A可由B线性表示,A线性无关,则A的元素数不多于B

6.极大无关组

(1)定义:

在向量组A中,能找出r个向量,满足

  • r个向量线性无关
  • 任意r+1个向量线性相关

简单理解就是找一组元素数量最多的线性无关的向量,能表示A中任意向量,我们称这个向量组为 A 0 A_0 A0

A 0 A_0 A0就是向量组A的一个最大的无关向量组称极大无关组向量个数r称为向量组A的秩
注意:

  • 只含零向量的向量组没用极大无关组,规定秩为0

  • 线性无关向量组的极大无关组是本身

  • 一般向量组的极大无关组不唯一,元素个数相等,相互等价

  • 定理10:向量组与它的极大无关组等价

  • 定理11:若A中存在r阶子式不等于0,则这个子式所在r个列向量线性无关
    若所有r阶子式为0,则任意r个向量线性相关

  • 定理12:向量组的秩等于向量组组成的矩阵的秩,某个r阶子式非零,则这个子式所在r个列向量是A的极大无关组

二十、方程组解的结构

1.齐次方程

性质: β 1 , β 2 β1 ,β2 β1β2 A x = 0 Ax = 0 Ax=0的两个解,那么 k 1 β 1 + k 2 β 2 k1β1 + k2β2 k1β1+k2β2也是它的解
定义:
β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn线性无关
Ax=0的任意解可以被 β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn表示出来
我们称 β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn A x = 0 Ax =0 Ax=0基础解系
定理13:
如果齐次方程有非零解,一定有基础解系,且基础解系解向量个数=n-r
r为系数矩阵A的秩,n为未知量个数,n-r是自由未知量个数
通解 x = k 1 + β 1 + k 2 β 2 + . . . + k n β n x = k1+β1+k2β2+...+knβn x=k1+β1+k2β2+...+knβn

2.非齐次方程

性质2:β1 ,β2 是 A x = b Ax = b Ax=b的两个解,那么β1 - β2是Ax=0的解
性质3: η是 A x = b Ax=b Ax=b的解,β是 A x = 0 Ax=0 Ax=0的解,则 η + β η+β η+β A x = b Ax=b Ax=b的解
定理14:若 η ∗ η* η A x = b Ax=b Ax=b的一个特解, A x = 0 Ax=0 Ax=0的基础解为 β 1 , . . . β n − r β1,...βn-r β1...βnr
则通解 x = η ∗ + β 1 + β n − r x = η* + β1+βn-r x=η+β1+βnr

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1018869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CH573-09-BLE蓝牙安卓应用二次开发——RISC-V内核BLE MCU快速开发教程

一、基础工程搭建 在上一章最后一讲的BLE蓝牙例程中&#xff0c;我们使用了沁恒官方的BLE调试助手完成数据发送&#xff0c;接下来我们使用Android Studio完成一款简易的BLE调试助手。 1、参考文章 我这里参考了CSDN中的一位博主“摸爬滚打的程序媛”的文章以及对应文章中的…

2023最新玩客云刷机armbian,部署docker并配置各种常用容器镜像

#以下安装从基于 rootonecloud:~# lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.2 LTS Release: 22.04 Codename: jammy刷机开始 &#xff08;以下刷机教程部分资料来源于&#xff1a;玩客云刷ARMBIAN系统…

linux查看进程对应的线程(数)

首先&#xff0c;top或ps查看进程列表&#xff0c;确定要查看的进程pid&#xff0c;如下面40698 查看进程的线程情况 查看进程&#xff1a;top -p 40698 查看线程&#xff1a;top -p 40698 -d 3 -H 其中-d是刷新频率 可看到此进程共211个线程&#xff0c;运行中的是211个。…

C++基础-类和对象(下)

文章目录 前言一、构造深入1.初始化列表2.隐式类型转换1.隐式类型转换2.explicit 3.委托构造 二、类的静态成员1.静态成员声明2.静态成员定义3.静态成员特性 三、重载运算符和类型转化1.关系及算数运算符重载2.递增递减运算符重载及如何区分3.赋值运算符重载4.重载输入输出运算…

【基础篇】五、基于SpringBoot来整合SSM的案例(上)

文章目录 0、创建模块1、实体类的快速开发Lombok2、数据层开发&#xff08;CRUD&#xff09;3、分页4、条件查询5、业务层的标准开发6、业务层的快速开发&#xff08;基于MyBatisPlus&#xff09;7、表现层开发 接下来在SpringBoot下&#xff0c;把Spring、SpringMVC、MyBatis整…

项目进度管理(3-3)PERT计划评审技术详解

1 计划评审技术起源 PERT&#xff08;Program Evaluation and Review Technique&#xff0c;项目评估和审查技术&#xff09;的起源可以追溯到20世纪50年代&#xff0c;与美国国防部和美国海军的项目管理有关。 PERT的发展始于20世纪50年代初&#xff0c;当时美国国防部正面临…

ConfigMaps-2

文章目录 主要内容一.Volume 挂载 ConfigMap1.创建一个Pod&#xff0c;起挂载的内容&#xff0c;将来自下面的configmap&#xff1a;代码如下&#xff08;示例&#xff09;: 2.解释 二.环境变量 ConfigMap1.创建一个名为 mysqlpass 且包含 passwordABCabc123 的 configmap&…

第一、二题见贴图第三题 实现求1-100之间的质数?

print("模式A") while True: for i in range (1,7): for j in range(1, 7): if j < i: print(j,end"\t") print() break print() print("模式B") while True: for i in range (6,…

【测开】Java快转Python 学习路径记录

写在前面 工作后需要用python&#xff0c;记录下学习的一些资料和总结&#xff0c;仅供参考&#xff0c;希望对你有帮助。 2023/9/8 (碎碎念&#xff1a;我太懂工作要用时自己却不会的感觉了…心好累&#xff0c;问大家怎么学就说这简单…md记录一下&#xff09; Part.1 对比 …

基于Java汽车服务商城系统 设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

知识图谱(3)关系抽取

信息抽取旨在从大规模非结构化或半结构化的自然语言文本中抽取结构化信息。关系抽取是其中的重要子任务&#xff0c;主要目的是从文本中识别实体并抽取实体之间的语义关系。 比如有下面的文本&#xff1a; International Business Machines Corporation (IBM or the company) …

2019-2021年上市公司润灵ESG评分评级数据

2019-2021年上市公司润灵ESG评分评级数据 1、时间&#xff1a;2019-2021年 2、指标&#xff1a;股票代码、股票简称、评级年份、所属指数名称、GICS行业一级分类、GICS行业一级分类代码、GICS行业二级分类、GICS行业二级分类代码、GICS行业三级分类、GICS行业三级分类代码、E…

【Qt 图形视图框架】QGraphics分析及使用

组成 Qt 图形视图框架分为三部分&#xff1a;场景、视图、图元。 场景对于程序来说&#xff0c;场景是不可见的&#xff0c;是一个抽象的管理图形项的容器。 可以向场景中添加图形项&#xff0c;比如&#xff1a;圆形、矩形、三角形等等 此外&#xff0c;还可以获取场景中的某…

games101 作业2

题目 光栅化一个三角形 1. 创建三角形的 2 维 bounding box。 2. 遍历此 bounding box 内的所有像素&#xff08;使用其整数索引&#xff09;。然后&#xff0c;使用像素中心的屏幕空间坐标来检查中心点是否在三角形内。 3. 如果在内部&#xff0c;则将其位置处的插值深度值 (…

GICv3学习

GICv3学习 参考文档&#xff1a; 《corelink_gic600_generic_interrupt_controller_technical_reference_manual_100336_0106_00_en》 《IHI0069H_gic_architecture_specification》 《ECM0495013B_GIC_Stream_Protocol》 一、GICv3寄存器接口 接口如下图所示&#xff1a…

手搭手入门Mybatis-Plus配置多数据源

https://baomidou.com/ Mybatis-Plus介绍 为简化开发而生 MyBatis-Plus(opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window) 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 特性 无…

Python 多线程概述

视频版教程 Python3零基础7天入门实战视频教程 几乎所有的操作系统都支持同时运行多个任务&#xff0c;一个任务通常就是一个程序&#xff0c;每一个运行中的程序就是一个进程。当一个程序运行时&#xff0c;内部可能包含多个顺序执行流&#xff0c;每一个顺序执行流就是一个线…

指针笔试题

目录 指针笔试题 NO1. NO2. NO3. NO4. NO5.✔ NO6. NO7. NO8.✔ 今天接着继续指针练习。&#x1f642;&#x1f642;&#x1f642; 指针笔试题 NO1. //指针的类型 //转化后的类型 //解引用访问根据指针类型访问几个字节 //整型在内存中的存储------小端存储 //*解引…

项目上线部署--》服务器部署流程(二)安装Nginx、Node.js、MySQL

阅读本篇文章前请先阅读项目上线部署--》服务器部署流程&#xff08;一&#xff09; 目录 &#x1f31f;安装Nginx 先登录远程服务器&#xff0c;安装依赖包 下载并解压包 &#x1f31f;安装Node.js 安装nodejs进程管理工具 &#x1f31f;安装MySQL &#x1f31f;写在最…

透过《眼睛的故事》:需求为何成为纪录片的“价值锚点”?

我们正处在一个内容过载、追求流量的时代。 对于观众来说&#xff0c;这是幸运的&#xff0c;也是不幸的。一方面&#xff0c;相比以前能接受到的内容指数级增长&#xff0c;自己的视野无限扩大&#xff0c;但另一方面&#xff0c;“流量思维”下粗制滥制的内容不在少数&#…