中心频率
f
c
H
z
f_c \rm Hz
fcHz
3dB陷波器带宽
f
b
H
z
f_b \rm Hz
fbHz
陷波器深度
d
d
d 倍,即
20
log
(
d
)
d
B
20\log(d) \rm dB
20log(d)dB
则
B
=
2
π
f
b
ω
n
=
2
π
f
c
\begin{aligned} B &=2\pi f_b \\ \omega_n &= 2\pi f_c \end{aligned}
Bωn=2πfb=2πfc
定义
ξ 1 = 1 − 1 + B 2 ω n 2 4 d 2 − 2 ξ 2 = d ξ 1 \begin{aligned} \xi_1 &= \sqrt{\frac{1 - \sqrt{1+\frac{B^2}{\omega_n^2}}}{4d^2 -2}} \\ \xi_2 &= d \xi_1 \end{aligned} ξ1ξ2=4d2−21−1+ωn2B2=dξ1
则传递函数为
G
(
s
)
=
s
2
+
2
ξ
2
ω
n
s
+
ω
n
2
s
2
+
2
ξ
1
ω
n
s
+
ω
n
2
G(s) = \frac{s^2+2\xi_2 \omega_n s+\omega_n^2}{s^2+2\xi_1 \omega_n s+\omega_n^2}
G(s)=s2+2ξ1ωns+ωn2s2+2ξ2ωns+ωn2
fwb = 10; % 3dB截至频率 Hz
fc = 100; % 中心频率 Hz
B = 2*pi*fwb;
Wn = 2*pi*fc;
depth = 0.1;
k1 = sqrt((1-sqrt(1+B^2/Wn^2)) / (4*depth^2-2));
k2 = depth * k1;
num = [1, 2*k2*Wn, Wn^2];
den = [1, 2*k1*Wn, Wn^2];
G = tf(num,den);
figure(1)
bode(G, 10*2*pi:0.01:1000*2*pi);
grid on;
figure(2);
[mag,phase,wout] = bode(G, 10*2*pi:0.01:1000*2*pi);
semilogx(wout/(2*pi), 20*log10(squeeze(mag)));
grid on;
xlabel('频率(Hz)')
ylabel('幅度(dB)')
——完——