线性代数的本质(四)——行列式

news2024/11/29 9:39:47

文章目录

  • 行列式

行列式

二阶行列式

行列式引自对线性方程组的求解。考虑两个方程的二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2
可使用消元法,得
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 ( a 11 a 22 − a 12 a 21 ) x 2 = a 11 b 2 − b 1 a 21 (a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-a_{12}b_2 \\ (a_{11}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-b_1a_{21} (a11a22a12a21)x1=b1a22a12b2(a11a22a12a21)x2=a11b2b1a21
a 11 a 22 − a 12 a 21 ≠ 0 a_{11}a_{22}-a_{12}a_{21}\neq 0 a11a22a12a21=0 时,得
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}} x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21a11b2b1a21
从方程组解来看,分母 a 11 a 22 − a 12 a 21 a_{11}a_{22}-a_{12}a_{21} a11a22a12a21 是系数矩阵 A = [ a 11 a 12 a 21 a 22 ] A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} A=[a11a21a12a22] 的元素计算得到,称这个值为矩阵 A A A二阶行列式(determinant),记为 det ⁡ A \det A detA ∣ A ∣ |A| A ,或记为数表形式
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} a11a21a12a22 =a11a22a12a21
利用二阶行列式的概念,分子也可写为二阶行列式
det ⁡ A 1 = ∣ b 1 a 12 b 2 a 22 ∣ = b 1 a 22 − a 12 b 2 det ⁡ A 2 = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − b 1 a 21 \det A_1=\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22}\end{vmatrix}=b_1a_{22}-a_{12}b_2 \\ \det A_2=\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2\end{vmatrix}=a_{11}b_2-b_1a_{21} detA1= b1b2a12a22 =b1a22a12b2detA2= a11a21b1b2 =a11b2b1a21
从上面对比可以看出, x j x_j xj 的矩阵 A j A_j Aj 是系数矩阵 A A A的第 j j j 列用常数项代替后的矩阵。这样,方程组的解可表示为
x 1 = det ⁡ A 1 det ⁡ A , x 2 = det ⁡ A 2 det ⁡ A x_1=\frac{\det A_1}{\det A},\quad x_2=\frac{\det A_2}{\det A} x1=detAdetA1,x2=detAdetA2

n n n 阶行列式

考虑三个方程的三元线性方程组,系数矩阵为
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{bmatrix} A= a11a21a31a12a22a32a13a23a33
用消元法可知未知数的分母同样是系数矩阵 A A A 的元素运算得到,于是定义三阶行列式为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32} -a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31
由二阶行列式的定义,上式可变为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix}= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33}\end{vmatrix}- a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33}\end{vmatrix}+ a_{13}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{vmatrix} a11a21a31a12a22a32a13a23a33 =a11 a22a32a23a33 a12 a21a31a23a33 +a13 a11a21a12a22
进一步探索 n n n 元线性方程组,可知高阶行列式定义。为书写方便,把元素 a i j a_{ij} aij 所在的行和列划掉后,剩下的元素组成的行列式称为 a i j a_{ij} aij余子式(cofactor),记作 M i j M_{ij} Mij ,并称
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
a i j a_{ij} aij代数余子式(algebraic cofactor)。

定义:方阵 A A A 的行列式用第一行元素的代数余子式定义为
det ⁡ A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j = 1 n a 1 j A 1 j \det A=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{vmatrix}=\sum_{j=1}^na_{1j}A_{1j} detA= a11a21an1a12a22an2a1na2nann =j=1na1jA1j
由定义易知,行列式可以按任意行(列)展开。
det ⁡ A = ∑ j = 1 n a i j A i j , by row  i det ⁡ A = ∑ i = 1 n a i j A i j , by col  j \det A=\sum_{j=1}^na_{ij}A_{ij}, \quad \text{by row }i \\ \det A=\sum_{i=1}^na_{ij}A_{ij}, \quad \text{by col }j detA=j=1naijAij,by row idetA=i=1naijAij,by col j

行列式的性质

性质:使用数学归纳法可知

  1. 行列式与其转置行列式相等: det ⁡ A T = det ⁡ A \det A^T=\det A detAT=detA
  2. 互换行列式两行(列),行列式改变符号。
    ∣ a b c d ∣ = − ∣ c d a b ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=-\begin{vmatrix}c&d\\a&b\end{vmatrix} acbd = cadb
  3. 行列式的某一行(列)所有元素同乘以数 k k k,等于数 k k k乘以该行列式。
    ∣ k a b k c d ∣ = k ∣ a b c d ∣ \begin{vmatrix}ka&b\\kc&d\end{vmatrix}=k\begin{vmatrix}a&b\\c&d\end{vmatrix} kakcbd =k acbd
  4. 若行列式的某一行(列)的为两组数之和,则可表示为两行列式之和。
    ∣ a 1 + a 2 b c 1 + c 2 d ∣ = ∣ a 1 b c 1 d ∣ + ∣ a 2 b c 2 d ∣ \begin{vmatrix}a_1+a_2&b\\c_1+c_2&d\end{vmatrix}=\begin{vmatrix}a_1&b\\c_1&d\end{vmatrix}+\begin{vmatrix}a_2&b\\c_2&d\end{vmatrix} a1+a2c1+c2bd = a1c1bd + a2c2bd
  5. 把行列式的某一行(列)所有元素同乘以数 k k k 都加到另一行(列)对应的元素上去,行列式的值不变。
    ∣ a b c d ∣ = ∣ a + k b b c + k d d ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a+kb&b\\c+kd&d\end{vmatrix} acbd = a+kbc+kdbd
  6. 矩阵乘积的行列式等于行列式的乘积: det ⁡ ( A B ) = ( det ⁡ A ) ( det ⁡ B ) = det ⁡ ( B A ) \det(AB)=(\det A)(\det B)=\det(BA) det(AB)=(detA)(detB)=det(BA)

推论

  1. 行列式中若有两行(列)元素相同,该行列式的值为零。
  2. 行列式中某一行(列)的公因子可以提取到行列式符号外面。
  3. 行列式中若有两行(列)元素成比例,则此行列式等于零。
  4. det ⁡ ( k A ) = k n det ⁡ A \det(kA)=k^n\det A det(kA)=kndetA

由上面的性质,我们很容易得到:

  1. 出现零行和零列的行列式为零。
  2. 对角阵 A = diag ( λ 1 , λ 2 , ⋯   , λ n ) A=\text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,,λn) 的行列式 det ⁡ A = λ 1 λ 2 ⋯ λ n \det A=\lambda_1\lambda_2\cdots\lambda_n detA=λ1λ2λn
  3. 如果 A A A 是三角阵,行列式为主对角线元素的乘积。

对于高阶行列式,一般利用行列式的性质,初等变换化为三角行列式求解。

示例:可用数学归纳法证明范德蒙行列式(Vandermonde determinant):
∣ 1 1 ⋯ 1 a 1 a 2 ⋯ a n a 1 2 a 2 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ i < j ⩽ n ( a j − a i ) \begin{vmatrix} 1 & 1& \cdots &1 \\ a_1 &a_2&\cdots &a_n \\ a_1^2 &a_2^2&\cdots &a_n^2 \\ \vdots &\vdots&\vdots &\vdots \\ a_1^{n-1} &a_2^{n-1}&\cdots &a_n^{n-1} \end{vmatrix}=\prod_{1⩽ i<j⩽n}(a_j-a_i) 1a1a12a1n11a2a22a2n11anan2ann1 =1i<jn(ajai)

行列式函数:若 A A A n n n阶矩 阵,可以将 det ⁡ A \det A detA 看作 A A A n n n 个列向量的函数。若 A A A 中除了一列之外都是固定的向量,则 det ⁡ A \det A detA 是线性函数。

假设第 j j j 列是变量,定义映射 x ↦ T ( x ) \mathbf x\mapsto T(\mathbf x) xT(x)
T ( x ) = det ⁡ A = det ⁡ [ a 1 ⋯ x ⋯ a n ] T(\mathbf x)=\det A=\det\begin{bmatrix}\mathbf a_1\cdots\mathbf x\cdots\mathbf a_n\end{bmatrix} T(x)=detA=det[a1xan]
则有
T ( c x ) = c T ( x ) T ( u + v ) = T ( u ) + T ( v ) T(c\mathbf x)=cT(\mathbf x) \\ T(\mathbf u+\mathbf v)=T(\mathbf u)+T(\mathbf v) T(cx)=cT(x)T(u+v)=T(u)+T(v)

克拉默法则

这里只讨论方程个数和未知数相等的 n n n元线性方程组
A x = b A\mathbf x=\mathbf b Ax=b
det ⁡ A ≠ 0 \det A\neq0 detA=0,那么它有唯一解
x j = det ⁡ A j ( b ) det ⁡ A , ( j = 1 , 2 , ⋯   , n ) x_j=\frac{\det A_j(\mathbf b)}{\det A},\quad(j=1,2,\cdots,n) xj=detAdetAj(b),(j=1,2,,n)

约定 A j ( b ) A_j(\mathbf b) Aj(b) 表示用向量 b \mathbf b b 替换矩阵 A A A的第 j j j列。

证:用 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 表示矩阵 A A A 的各列, e 1 , e 2 , ⋯   , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en 表示单位阵 I n I_n In 的各列。由分块矩阵乘法
A I j ( x ) = A [ e 1 ⋯ x ⋯ e n ] = [ A e 1 ⋯ A x ⋯ A e n ] = [ a 1 ⋯ b ⋯ a n ] = A j ( b ) \begin{aligned} AI_j(\mathbf x)&=A\begin{bmatrix}\mathbf e_1&\cdots&\mathbf x&\cdots&\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}A\mathbf e_1&\cdots& A\mathbf x&\cdots& A\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}\mathbf a_1&\cdots&\mathbf b&\cdots&\mathbf a_n\end{bmatrix} \\ &=A_j(\mathbf b) \end{aligned} AIj(x)=A[e1xen]=[Ae1AxAen]=[a1ban]=Aj(b)
由行列式的乘法性质
det ⁡ A det ⁡ I j ( x ) = det ⁡ A j ( b ) \det A\det I_j(\mathbf x)=\det A_j(\mathbf b) detAdetIj(x)=detAj(b)
左边第二个行列式可沿第 j j j 列余子式展开求得 det ⁡ I j ( x ) = x j \det I_j(\mathbf x)=x_j detIj(x)=xj。从而
x j det ⁡ A = det ⁡ A j ( b ) x_j\det A=\det A_j(\mathbf b) xjdetA=detAj(b)
det ⁡ A ≠ 0 \det A\neq0 detA=0,则上式得证。

行列式的几何理解

Grant:行列式告诉你一个线性变换对区域的缩放比例。

我们已经知道,线性变换保持网格线平行且等距。为了方便,我们只考虑在平面直角坐标系内,单位基向量 i , j \mathbf i,\mathbf j i,j 所围成的单位正方形区域的线性变换。

根据向量加法的平行四边形法则和线性变换基本性质知,变换后的区域为矩阵 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] 的列向量 [ a c ] \begin{bmatrix}a\\c\end{bmatrix} [ac] [ b d ] \begin{bmatrix}b\\d\end{bmatrix} [bd] 为邻边的平行四边形区域。

结论:二阶行列式的值表示由 A A A 的列确定的有向平行四边形的面积。

(1) 若 A A A 为对角阵,显然行列式 det ⁡ [ a b 0 d ] \det\begin{bmatrix}a & b\\0 & d\end{bmatrix} det[a0bd] 表示底为 a a a,高为 d d d 的平行四边形面积

在这里插入图片描述

(2) 更一般的情况 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] ,可以看出,行列式的值与面积有着紧密的联系。

在这里插入图片描述

(3) 矩阵 [ a 2 a a 1 ] \begin{bmatrix}a^2 & a\\a & 1\end{bmatrix} [a2aa1] 表示将单位正方形压缩成线段,面积自然为0,行列式的值为0

在这里插入图片描述

单位正方形区域缩放的比例,其实可以代表任意给定区域缩放的比例。这是因为,线性变换保持网格线平行且等距。对于空间中任意区域的面积,借助微积分的思想,我们可以采用足够的小方格来逼近区域的面积,对所有小方格等比例缩放,则整个区域也以同样的比例缩放。
volume  T ( Ω ) = ( det ⁡ T ) ( volume  Ω ) \text{volume }T(\Omega) = (\det T)(\text{volume }\Omega) volume T(Ω)=(detT)(volume Ω)
在这里插入图片描述

通过行列式的几何意义,我们就建立了线性变换、矩阵、行列式之间的关系。不难得出

  1. 复合线性变换缩放的比例相当于每次变换缩放比例的乘积,即
    det ⁡ A B = det ⁡ A det ⁡ B \det AB=\det A\det B detAB=detAdetB
  2. 行列式的值为零,表示将空间压缩到更低的维度,矩阵的列向量线性相关

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008148.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue3:proxy数据取值proxy[Target]取值

vue3底层是使用proxy进行代理的&#xff0c;而proxy中[[Target]]才是想要的值。 获取target值的方式一&#xff1a; <script setup>//先引入toRawimport { toRaw } from vue;//再使用console.log(toRaw(数据名))</script> 获取target值的方式二&#xff1a; <…

阿里云服务器配置怎么选择?几核几G?带宽系统盘怎么选?

阿里云服务器配置选择_CPU内存/带宽/存储配置_小白指南&#xff0c;阿里云服务器配置选择方法包括云服务器类型、CPU内存、操作系统、公网带宽、系统盘存储、网络带宽选择、安全配置、监控等&#xff0c;阿小云分享阿里云服务器配置选择方法&#xff0c;选择适合自己的云服务器…

NetSuite知识会汇编-管理员篇顾问篇2023

本月初&#xff0c;开学之际&#xff0c;我们发布了《NetSuite知识会汇编-用户篇 2023》&#xff0c;这次发布《NetSuite知识会汇编-管理员篇&顾问篇2023》。本篇挑选了近两年NetSuite知识会中的一些文章&#xff0c;涉及开发、权限、系统管理等较深的内容&#xff0c;共19…

嵌入式Linux驱动开发(I2C专题)(二)

I2C系统的重要结构体 参考资料&#xff1a; Linux驱动程序: drivers/i2c/i2c-dev.cI2CTools: https://mirrors.edge.kernel.org/pub/software/utils/i2c-tools/ 1. I2C硬件框架 2. I2C传输协议 3. Linux软件框架 4. 重要结构体 使用一句话概括I2C传输&#xff1a;APP通过I2…

linux rz乱码文件删除

通过rz上传文件的时候经常会遇到 文件乱码问题&#xff0c;删又删不掉。 使用rz -be的方法上传 遇到乱码文件操作步骤 1. ls -i # 列出文件的编号 2. find . -inum 29229139 -delete # 根据编号删除文件 find 需要扫描的路径 -inum 文件编号 -delete

VRTK4⭐四.和 UI 元素交互

文章目录 &#x1f7e5; 安装Tilia Unity.UI&#x1f7e7; 配置射线与UI交互器1️⃣ 配置直线射线2️⃣ 配置UI交互器 &#x1f7e8; 配置UI1️⃣ 更新EventSystem2️⃣ 进行Canvas设置 我们要实现的功能: 右手触摸到圆盘:显示直线射线 右手圆盘键按下:与选中UI交互 &#x1f7…

JWT安全

文章目录 理论知识cookie(放在浏览器)session(放在 服务器)tokenjwt&#xff08;json web token&#xff09;headerpayloadSignatureJWT通信流程 JWT与Token 区别相同点区别 WebGoat靶场--JWT tokens环境启动第四关第五关第七关 属于越权漏洞 理论知识 cookie(放在浏览器) ​…

静电消除器在工业设备中的用途

静电消除有几种&#xff0c;其中包括离子风枪、离子风嘴、离子风棒、离子风枪、离子风蛇等。今天我们就来聊一下离子风蛇。 离子风蛇是一种坐立式静电消除器&#xff0c;可消除难以接近或接触物体的静电或灰尘&#xff0c;可将蛇管随意变形使风咀指向目标方位&#xff0c;无需…

AIGC:【LLM(八)】——Baichuan2技术报告

文章目录 摘要1. 引言2. 预训练2.1 预训练数据&#xff08;Pre-training Data&#xff09;2.2 架构&#xff08;Architecture&#xff09;2.3 令牌化器&#xff08;Tokenizer&#xff09;2.3.1 Positional Embeddings 2.4 激活和规范化&#xff08;Activations and Normalizati…

vue2-x6-dag自定义vue组件节点

效果如图 官方案例 人工智能建模 DAG 图 vue2中自定义节点 代码 1.dag.json [{"id": "1","shape": "dag-node","x": 290,"y": 110,"data": {"label": "读数据","status&q…

2023CVPR:图像恢复的又一力作

今天要分享的论文是2023CVPR《Efficient and Explicit Modelling of Image Hierarchies for Image Restoration》&#xff0c;图像恢复领域的又一力作&#xff0c;提供了新的发现&#xff0c;给出了新的解决方案 代码 https://github.com/ofsoundof/GRL-Image-Restoration 问…

C语言指针快速入门

指针的基本介绍 简单的说指针用于表示地址&#xff0c;存放的是一个地址 获取指针的地址 //指针的入门 #include <stdio.h>int main() {int num 1;//num的地址是多少//说明1&#xff1a;如果要输出一个变量的地址使用的格式是%p//说明2&#xff1a;&num 表示取出n…

百度SEO优化攻略(提高网站排名的必修课)

百度SEO优化策略介绍&#xff1a; 在百度搜索引擎中&#xff0c;网站的排名越靠前&#xff0c;就越能吸引更多的流量和用户。要想让网站排名更高&#xff0c;就必须进行SEO优化。百度SEO优化是一个长期的过程&#xff0c;需要不断调整和优化。下面介绍5个优化方法&#xff0c;…

C++ - 二叉树OJ题

二叉树的两种层序遍历 在写之前&#xff0c;我们先来看两种二叉树的层序遍历&#xff1a; 1.给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 输入&#xff1a;root [3,9,20,null,null…

靠差异化上了短剧“牌桌”后,百度准备怎么做生态?

从最初的野蛮生长到如今的百花齐放&#xff0c;短剧市场已然进入了质量与创意的竞争。 据《中国网络视听发展研究报告》数据显示&#xff0c;行业内重点网络微短剧上线数量从2021年的58部&#xff0c;飙升到2022年的172部。相比起前几年处于风口时的爆发式增长&#xff0c;“分…

广读论文核心思路汇总笔记 (一些有意思的论文and论文在研究的一些有意思的问题or场景应用)

思路可借鉴和学习 On the Generalization of Multi-modal Contrastive Learning CoRR, ICML&#xff08;2023&#xff09; 摘要&#xff1a;多模态对比学习&#xff08;MMCL&#xff09;最近引起了广泛关注&#xff0c;因为它在视觉任务上的表现优于其他方法&#xff0c;这些方…

ASP.NET dotnet 3.5 实验室信息管理系统LIMS源码

技术架构&#xff1a;ASP.NET dotnet 3.5 LIMS作为一个信息管理系统&#xff0c;它有着和ERP、MIS之类管理软件的共性&#xff0c;如它是通过现代管理模式与计算机管理信息系统支持企业或单位合理、系统地管理经营与生产&#xff0c;最大限度地发挥现有设备、资源、人、技术的…

Apifox 关于token的使用方式

前言&#xff0c;关于token的使用&#xff0c;仅做了简单的demo测试token效果。 1.手动登录获取token 顾名思义&#xff0c;因为只有登录之后才有token的信息&#xff0c;所以在调用其他接口前需要拥有token才能访问。 操作步骤 1)添加环境变量、全局参数 这里拿测试环境举…

vue基础 组合式和响应式 模板语法 计算属性

模板语法 | Vue.js 根据文档 组合式和响应式 响应式 响应api单网页实例式 组合式 组合式api单网页实例 模板语法 文本插值 {{msg}} 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; <script setup> import {onMo…

Promethues(五)查询-PromQL 语言-保证易懂好学

一、介绍 普罗米修斯提供了一种称为PromQL&#xff08;普罗米修斯查询语言&#xff09;的函数式查询语言&#xff0c;允许用户实时选择和聚合时间序列数据。 表达式的结果可以显示为图形&#xff0c;在 Prometheus 的表达式浏览器中显示为表格数据&#xff0c;也可以通过 HTT…