4个维度讲透ChatGPT技术原理,揭开ChatGPT神秘技术黑盒!

news2024/11/22 16:46:53

4个维度讲透ChatGPT技术原理,揭开ChatGPT神秘技术黑盒!


)

在这里插入图片描述

博主 默语带您 Go to New World.
个人主页—— 默语 的博客👦🏻
《java 面试题大全》
🍩惟余辈才疏学浅,临摹之作或有不妥之处,还请读者海涵指正。☕🍭
《MYSQL从入门到精通》数据库是开发者必会基础之一~
🪁 吾期望此文有资助于尔,即使粗浅难及深广,亦备添少许微薄之助。苟未尽善尽美,敬请批评指正,以资改进。!💻⌨

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

2022年11月30日,ChatGPT模型问世后,立刻在全球范围内掀起了轩然大波。无论AI从业者还是非从业者,都在热议ChatGPT极具冲击力的交互体验和惊人的生成内容。这使得广大群众重新认识到人工智能的潜力和价值。对于AI从业者来说,ChatGPT模型成为一种思路的扩充,大模型不再是刷榜的玩具,所有人都认识到高质量数据的重要性,并坚信“有多少人工,就会有多少智能”。

ChatGPT模型效果过于优秀,在许多任务上,即使是零样本或少样本数据也可以达到SOTA效果,使得很多人转向大模型的研究。

不仅Google提出了对标ChatGPT的Bard模型,国内涌现出了许多中文大模型,如百度的“文心一言”、阿里的“通义千问”、商汤的“日日新”、知乎的“知海图AI”、清华智谱的“ChatGLM”、复旦的“MOSS”、Meta的“Llama1&Llama2”等等。

Alpaca模型问世之后,证明了70亿参数量的模型虽然达不到ChatGPT的效果,但已经极大程度上降低了大模型的算力成本,使得普通用户和一般企业也可以使用大模型。之前一直强调的数据问题,可以通过GPT-3.5或GPT-4接口来获取数据,并且数据质量也相当高。如果只需要基本的效果模型,数据是否再次精标已经不是那么重要了(当然,要获得更好的效果,则需要更精准的数据)。

1Tansformer架构模型

预训练语言模型的本质是通过从海量数据中学到语言的通用表达,使得在下游子任务中可以获得更优异的结果。随着模型参数不断增加,很多预训练语言模型又被称为大型语言模型(Large Language Model,LLM)。不同人对于“大”的定义不同,很难说多少参数量的模型是大型语言模型,通常并不强行区分预训练语言模型和大型语言模型之间的差别。

图片

图注:来自《Attention Is All You Need》

预训练语言模型根据底层模型网络结构,一般分为仅Encoder架构模型、仅Decoder架构模型和Encoder-Decoder架构模型。其中,仅Encoder架构模型包括但不限于BERT、RoBerta、Ernie、SpanBert、AlBert等;仅Decoder架构模型包括但不限于GPT、CPM、PaLM、OPT、Bloom、Llama等;Encoder-Decoder架构模型包括但不限于Mass、Bart、T5等。

图片

图注:来自《Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond》

2ChatGPT原理

ChatGPT训练的整体流程主要分为3个阶段,预训练与提示学习阶段,结果评价与奖励建模阶段以及强化学习自我进化阶段;3个阶段分工明确,实现了模型从模仿期、管教期、自主期的阶段转变。

图片

图注:来自url:https://openai.com/blog/chatgpt

在第一阶段的模仿期,模型将重点放在学习各项指令型任务中,这个阶段的模型没有自我判别意识,更多的是模仿人工行为的过程,通过不断学习人类标注结果让其行为本身具有一定的智能型。然而仅仅是模仿往往会让机器的学习行为变成邯郸学步。

在第二阶段的管教期,优化内容发生了方向性转变,将重点从教育机器答案内容改变为教育机器答案的好坏。如果第一阶段,重点希望机器利用输入X,模仿学习输出Y’,并力求让Y’与原先标注的Y保持一致。那么,在第二阶段,重点则希望多个模型在针对X输出多个结果(Y1,Y2,Y3,Y4)时,可以自行判断多个结果的优劣情况。

当模型具备一定的判断能力时,认为该模型已经完成第二阶段的学习,可以进入第三阶段——自主期。在自主期的模型,需要通过左右互博的方式完成自我进化,即一方面自动生成多个输出结果,另一方面判断不同结果的优劣程度,并基于不同输出的效果模型差异评估,优化改进自动生成过程的模型参数,进而完成模型的自我强化学习。

总结来说,也可以将ChatGPT的3个阶段比喻为人成长的3个阶段,模仿期的目的是“知天理”,管教期的目的是“辨是非”,自主期的目的是“格万物”。

3提示学习与大模型能力的涌现

ChatGPT模型发布后,因其流畅的对话表达、极强的上下文存储、丰富的知识创作及其全面解决问题的能力而风靡全球,刷新了大众对人工智能的认知。提示学习(Prompt Learning)、上下文学习(In-Context Learning)、思维链(Chain of Thought,CoT)等概念也随之进入大众视野。市面上甚至出现了提示工程师这个职业,专门为指定任务编写提示模板。

提示学习被广大学者认为是自然语言处理在特征工程、深度学习、预训练+微调之后的第四范式。随着语言模型的参数不断增加,模型也涌现了上下文学习、思维链等能力,在不训练语言模型参数的前提下,仅通过几个演示示例就可以在很多自然语言处理任务上取得较好的成绩。

3.1 提示学习

提示学习是在原始输入文本上附加额外的提示(Prompt)信息作为新的输入,将下游的预测任务转化为语言模型任务,并将语言模型的预测结果转化为原本下游任务的预测结果。

以情感分析任务为例,原始任务是根据给定输入文本“我爱中国”,判断该段文本的情感极性。提示学习则是在原始输入文本“我爱中国”上增加额外的提示模板,例如:“这句话的情感为{mask}。”得到新的输入文本“我爱中国。这句话的情感为{mask}。”然后利用语言模型的掩码语言模型任务,针对{mask}标记进行预测,再将其预测出的Token映射到情感极性标签上,最终实现情感极性预测。

3.2 上下文学习

上下文学习可以看作提示学习的一种特殊情况,即演示示例看作提示学习中人工编写提示模板(离散型提示模板)的一部分,并且不进行模型参数的更新。

上下文学习的核心思想是通过类比来学习。对于一个情感分类任务来说,首先从已存在的情感分析样本库中抽取出部分演示示例,包含一些正向或负向的情感文本及对应标签;然后将其演示示例与待分析的情感文本进行拼接,送入到大型语言模型中;最终通过对演示示例的学习类比得出文本的情感极性。

图片

图注:来自《A Survey on In-context Learning》

这种学习方法也更加贴近人类学习后进行决策过程,通过观察别人对某些事件的处理方法,当自己遇到相同或类似事件时,可以轻松地并很好地解决。

3.3 思维链

大型语言模型横行的时代,它彻底改变了自然语言处理的模式。随着模型参数的增加,例如:情感分析、主题分类等系统-1任务(人类可以快速直观地完成的任务),即使是在少样本和零样本条件下均可以获得较好的效果。但对于系统-2任务(人类需要缓慢而深思熟虑的思考才能完成的任务),例如:逻辑推理、数学推理和常识推理等任务,即使模型参数增加到数千亿时,效果也并不理想,也就是简单地增加模型参数量并不能带来实质性的性能提升。

Google于2022年提出了思维链(Chain of thought,CoT)的概念,来提高大型语言模型执行各种推理任务的能力。思维链本质上是一种离散式提示模板,主旨是通过提示模板使得大型语言模型可以模仿人类思考的过程,给出逐步的推理依据,来推导出最终的答案,而每一步的推理依据组成的句子集合就是思维链的内容。

思维链其实是帮助大型语言模型将一个多步问题分解为多个可以被单独解答的中间步骤,而不是在一次向前传递中解决整个多跳问题。

图片

图注:来自《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》

4行业参考建议

4.1 拥抱变化

与其他领域不同,AIGC领域是当前变化最迅速的领域之一。以2023年3月13日至2023年3月19日这一周为例,我们经历了清华发布ChatGLM 6B开源模型、openAI将GPT4接口发布、百度文心一言举办发布会、微软推出Office同ChatGPT相结合的全新产品Copilot等一系列重大事件。

这些事件都会影响行业研究方向,并引发更多思考,例如,下一步技术路线是基于开源模型,还是从头预训练新模型,参数量应该设计多少?Copilot已经做好,办公插件AIGC的应用开发者如何应对?

即便如此,仍建议从业者拥抱变化,快速调整策略,借助前沿资源,以加速实现自身任务。

4.2 定位清晰

一定要明确自身细分赛道的目标,例如是做应用层还是底座优化层,是做C端市场还是B端市场,是做行业垂类应用还是通用工具软件。千万不要好高骛远,把握住风口,“切准蛋糕”。

定位清晰并不是指不撞南墙不回,更多的是明白自身目的及意义所在。

4.3 合规

AIGC最大的问题在于输出的不可控性,如果无法解决这个问题,它的发展将面临很大的瓶颈,无法在B端和C端市场广泛使用。在产品设计过程中,需要关注如何融合规则引擎、强化奖惩机制以及适当的人工介入。从业者应重点关注AIGC生成内容所涉及的版权、道德和法律风险。

4.4 经验沉淀

经验沉淀的目的是为了建立自身的壁垒。不要将所有的希望寄托于单个模型上,例如我们曾经将产品设计成纯文本格式,以便同ChatGPT无缝结合,但最新的GPT4已经支持多模态输入。我们不应气馁,而是要快速拥抱变化,并利用之前积累的经验(数据维度、Prompt维度、交互设计维度)快速完成产品升级,以更好地应对全新的场景和交互形态。

以上建议希望从业者加以参考。

虽然AIGC的浪潮下存在不少泡沫,但只要我们怀揣着拥抱变化的决心,始终明确我们要到达的远方,认真面对周围的风险危机,不断在实战中锻炼自身的能力,相信终有一天,会到达我们心中所向往的目的地。

本文内容摘编自《ChatGPT原理与实战:大型语言模型的算法技术和私有化》,经出版方授权发布。(ISBN:978-7-111-73303-4)

推荐语:

BAT资深AI专家和大模型技术专家撰写,MOSS系统负责人邱锡鹏等多位专家鼎力推荐!系统梳理并深入解析ChatGPT的核心技术、算法实现、工作原理、训练方法,提供大量代码及注解。它山之石,可以攻玉,不仅教你如何实现大模型的迁移和私有化,而且手把手教你零基础搭建自己专属的ChatGPT!

图片

赠书活动第十一期 参与方式:

在本博客下方评论区发表评论,即可参与抽奖; 抽奖方式:我们将随机抽取3位幸运伙伴,并允许每位伙伴最多发表5条评论,增加获奖机会;

抽奖时间:截止至2023年9月20日 17:00,评论时间超过该截止时间的将不计入抽奖范围;

结果公布:获奖者名单将在抽奖后尽快公布,敬请留意本博客的最新通知;

奖品:获奖者将获得《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》一书。

如对本文内容有任何疑问、建议或意见,请联系作者,作者将尽力回复并改进📓;(联系微信:Solitudemind )

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1006208.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python计算机Python二级知识点整理

1. 此时我们这里首先解析一下这个d[A]N,根据ASCII表,我们可以看出字符A对应的十进制数字是65,ord()函数是把字符转换为相对应的ASCII码,chr()函数是ord()函数的逆运算,所以ord("A")65 ,chr(65)A,题目中首先定义了d为一…

无涯教程-JavaScript - XIRR函数

描述 XIRR函数返回的现金Stream量表的内部收益率不一定是周期性的。要计算一系列定期现金Stream量的内部收益率,请使用IRR函数。 语法 XIRR (values, dates, [guess])争论 Argument描述Required/OptionalValues 与日期付款时间表相对应的一系列现金Stream量。 请参阅下面的…

1.centos7安装docker

本文目录: 1.docker 安装1.安装步骤2.安装是否成功校验3.docker加速配置4.hello world来袭,验证安装是否ok 2.卸载docker3.卸载较旧版本docker 使用docker必备的三个官方网站: docker官网:https://www.docker.com docker官方仓库&…

Java笔记:阻塞队列

1. 什么是阻塞队列? 阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常…

github一些有趣的使用场景和基本使用方法

文章目录 github的使用入门安装 Git创建 GitHub 帐户在本地设置 Git克隆仓库进行修改和提交推送更改拉取更新 删除Github上废弃的仓库注意 github更多有趣的使用场景协作和社交编程文档和知识库学习和教育自动化工作流程数据科学和可视化用来写blogGitHub PagesJekyllHexo第三方…

本地离线安装numpy低版本指南

不熟悉python,这几天瞎胡摸索 使用百度paddlepaddle的paddlespeech实现文字和语音互转,在linux系统没有任何问题,一切按照官方文档操作即可 由于本地机器是windows,配置相对较高,就想着在windows整一个paddlepaddle,继续按照官方文档操作,一直报错,首先是numpy版本过高,然后下…

低代码PMS:同事带的项目比我多,为什么管得还比我好?

近年来,随着客户需求不断多元化,要求不断精细化,越来越多企业意识到了项目管理的必要性。通过一款良好的项目管理系统,企业可以在综合管理项目的方方面面,确保实现项目目标的同时,让管理过程化繁为简。 PM…

第二证券:自动驾驶渐近 机构大佬齐看好

据姑苏发布9月11日音讯,国内首条满意车路协同式主动驾驭等级的全息感知才智高速公路即将在江苏姑苏启用。据介绍,该项目覆盖苏台高速S17(黄埭互通-阳澄湖北互通)。目前已完结悉数工程量超80%,估计9月底完结体系联调联试…

ChatGPT影响不可逆,与AI“共存”才是大趋势

不久前,英国24所顶尖大学联合宣布要撤销ChatGPT禁令! 不但联合宣布允许学生和教职员工在合乎道德的情况下使用生成式人工智能,还宣布学校会亲自指导学生使用。 此消息一出来可是让英国留学生们炸开了锅… 几个月前,二十多所英国学…

【微信小程序开发】一文学会使用视图组件进行界面设计

引言 在小程序开发中,界面设计是非常重要的一环。本文将介绍如何学习使用小程序的视图组件进行界面设计,并提供代码示例。 文章目录 引言1. 小程序视图组件简介2. 视图组件的使用方法2.1. 组件的引入2.2. 组件的使用2.3. 组件的事件绑定2.4. 组件的样式设…

通过数据模板自动生成表格table

1.数据模板中的主要几个参数需要注意下(需要加样式可自由设置参数): title:填入表格的内容 col:1,占一列,row: 3,占3行 align:center居中对齐, pdL:14,padding-left:14, bold:true,加粗 width:100&#xff…

PyTorch实战-实现神经网络图像分类基础Tensor最全操作详解(一)

目录 前言 一、PyTorch数据结构-Tensor 1.什么是Tensor 2.数据Tensor使用场景 3.张量形态 标量(0D 张量) 向量(1D 张量) 矩阵(2D张量) 3D 张量与高维张量 二、Tensor的创建 1. 从列表或NumPy数组创建 2. 使用特定的初始…

PCL 计算字符型ply文件的法向量

文章目录 ply格式计算法向量意义具体代码 ply格式 PLY(Polygon File Format)是一种用于存储三维模型数据的文件格式。在PLY文件中,法向量是指每个顶点或面片的法向量,用于描述表面的朝向和光照计算。 在PLY文件中,法…

springboot导出(POI)

POI官方文档 引入依赖 <!--POI--><dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>4.1.2</version></dependency><dependency><groupId>org.apache.poi</groupId&…

Spring Cloud Alibaba:Nacos服务治理平台

文章目录 什么是Nacos&#xff1f;使用Nacos进行服务注册与发现服务注册服务发现 负载均衡分析与拓展安全性性能监控日志记录 &#x1f389;欢迎来到架构设计专栏~Spring Cloud Alibaba&#xff1a;Nacos服务治理平台 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&…

学习笔记|矩阵按键控制原理|数值转化为键码|密码锁|STC32G单片机视频开发教程(冲哥)|第十四集:矩阵按键原理及实践

文章目录 1.矩阵按键是什么2.矩阵按键的控制原理3.矩阵按键程序的编写将数值转化为键码完整代码&#xff1a;demo.c&#xff1a;key.c:key.h: 密码锁&#xff08;简易版&#xff09;需求分析&#xff1a; 总结课后练习&#xff1a; 1.矩阵按键是什么 这个矩阵按键也是我们这个…

网上管理系统的分析及设计---应用UML建模

目 录 第1章 系统需求 第2章 需求分析 2.1 识别参与者 2.2 识别用例 2.3 用例的事件流描述 第3章 静态结构模型 3.1 定义系统对象 3.2 定义用户界面类 3.3 建立类图 第4章 动态行为模型 4.1 创建系统顺序图&#xff08;协作图&#xff09; 4.2 创建系统…

网络爬虫-----初识爬虫

目录 1. 什么是爬虫&#xff1f; 1.1 初识网络爬虫 1.1.1 百度新闻案例说明 1.1.2 网站排名&#xff08;访问权重pv&#xff09; 2. 爬虫的领域&#xff08;为什么学习爬虫 ?&#xff09; 2.1 数据的来源 2.2 爬虫等于黑客吗&#xff1f; 2.3 大数据和爬虫又有啥关系&…

Java低代码:jvs-list (子列表)表单回显及触发逻辑引擎配置说明

一、子列表【新增】表单默认回显主列表关联字段 子列表新增表单可使用表单回显配置&#xff0c;在新增表单中默认回显&#xff0c;如图效果 1、子列表中进入新增页面配置 2、切换到表单设置&#xff0c;选择回显设置&#xff0c;进入回显逻辑引擎。 3、在画布中拖入【对象变量…

记录一次对登录接口的性能测试

测试环境 客户端: win10 这里可以用linux,但没用,因为想直观查看结果。 被测环境:linux X86 4核CPU16G内存 被测接口:登录接口,没有做数据驱动。 场景设计 设置线程数19,持续时间5分钟,并用后端监听器监听结果,使用grafana+prometheus监控服务器资源。 测试执行 …