【距离注意残差网络:超分】

news2025/1/23 10:31:54

DARN: Distance Attention Residual Network for Lightweight Remote-Sensing Image Superresolution

(DARN:用于轻量级遥感图像超分辨率的距离注意残差网络)

单图像超分辨率技术在遥感领域的应用具有重要意义。尽管基于卷积神经网络(CNN)的SISR方法取得了很好的效果,但由于模型庞大,速度较慢,难以在真实的遥感任务中部署。在这篇文章中,我们提出了一个紧凑而有效的距离注意力残差网络(DARN),以实现模型准确性和复杂性之间的更好折衷。距离注意残差连接块(DARCB),DARN的核心组件,使用多级特征聚合来学习更准确的特征表示。DARCB的主分支采用浅残差块(SRB)来灵活地学习残差信息,以确保模型的鲁棒性。我们还提出了一个距离注意块(DAB) 作为主分支和DARCB分支之间的桥梁; DAB可以有效地减轻深度CNN提取过程中细节特征的损失。在两个遥感和五个超分辨率基准数据集上的实验结果表明,DARN在性能和模型复杂度方面比现有方法实现了更好的折衷。此外,DARN实现了最佳的解决方案相比,国家的最先进的轻量级遥感SISR方法的参数量,计算量和推理速度。

INTRODUCTION

超分辨率(SR)重建是指在一对高分辨率和低分辨率图像之间构建非线性映射关系。单幅图像超分辨率(SISR)作为最具代表性的低层视觉任务,已经得到了广泛的研究。SISR算法可以获得高清晰度图像,这使得它在军事,工业,航空航天和遥感等各个领域做出了巨大贡献。然而,在遥感领域的数据采集受到长距离,宽视角和光学硬件设备的影响。即使有先进的采集设备,也很难获得满足使命需要的高清晰度图像。因此,研究能够恢复遥感图像高频信息的SISR算法具有重要意义。
自从第一个开创性的SISR方法SRCNN被提出以来,低分辨率图像到高分辨率图像的端到端映射已经被纳入SR重建方法中,但新的解决方案不可避免地留下了一些必须解决的缺陷。例如,卷积核和非线性映射的不合理设计导致网络推理非常缓慢。FSRCNN基于SRCNN框架导出了一些依赖于不同算法的优化方法。ESPCN通过用子像素卷积函数代替传统的插值上采样来提高重建精度。更深的卷积神经网络(CNN)架构被证明可以提高模型性能。[11]提出的密集残差块可以缓解长距离残差造成的局部信息丢失问题。
在前人对CNN探索的基础上,SISR理论逐渐成熟。然而,这些总是试图通过增加模型容量来提高模型精度的方法在实际任务中难以显示应用价值。特别是遥感图像的大分辨率特性往往导致常用SISR算法的推理速度极慢。因此,如何设计一个轻量级、高效、准确的SISR模型已成为SR领域一个难以克服的问题。
从试图减少模型参数的角度来看,DRCN和DRRN采用了递归的方式来增加模型参数共享,但递归损失需要更深的CNN进行信息补偿,这使得它被迫降低模型的推理速度。CAUN-M试图通过参数修剪来去除或减少特征冗余,加快模型推理,但PSNR遭受了很大的准确性损失。显然,为了在模型的精度、速度和参数量之间取得一个有效的折衷,必须在有限的参数量范围内加强特征的表达能力。因此,由信息蒸馏网络(IDN)提出的信息蒸馏方法可以通过分裂特征通道以减少特征冗余来实现适度的折衷。然而,简单的通道分裂方法由于丢失了部分深层特征信息,限制了模型提取有效特征的性能。LESRCNN采用的异构结构可以通过灵活结合低频特征和高频特征来提高模型重构能力。MADNet通过类似于inception的多边残差模块加速了模型的推断。然而,这种多分支推理解决方案也遭受模型参数的大比例的缺点。在SR领域,FeNet受到IDN信道分裂的想法的启发,构建了一个轻量级的LLB模块。为了达到增强信道特征表达的目的,LLB模块采用信道注意机制构建上下分支的信息通信,同时信道分裂降低了模型参数。然而,在信息蒸馏的过程中出现了另一个问题。也就是说,在分裂通道时,蒸馏过程中产生的侧分支总是留下不能有效提取深度特征的缺陷在这里插入图片描述

本文构造了一种新颖的轻量级SR网络,即距离注意残差网络(DARN)来解决上述问题。DARN通过加强特征通道信息的表示和引入有效的注意力模块来提高网络的重构能力。我们构造的距离注意残差连接块(DARCB)是DARN的核心组件。DARCB通过特征细化卷积将输入特征显式地分成两个分支。其中,保留分支细化后的特征,并通过CNN模块进一步细化提取主分支。DARCB使用的CNN是基于卷积层、跨越连接和结束激活单元的浅残差块(SRB)。增强特征表示的最有效的解决方案是减少通道特征冗余并减轻深CNN引起的浅层特征丢失。这就是我们构建距离注意块(DAB)的具体原因。距离注意是指浅层特征可以通过注意的手段远程控制主分支中每个SRB的特征提取。DAB将分支的浅层特征作为先验信息,可以有效缓解主干深度CNN特征提取中浅层信息丢失的现象,从而增强模块的特征表达。最后,采用多级融合机制对每一级的细化特征进行融合,以减少主分支冗余特征对模块输出的影响。适当地引入注意模块有效地提高了SR网络的性能。因此,我们引入了一个增强的空间注意力(ESA)模块,以加强在本文中构建的模型的能力。如图1,所提出的DARN方法实现了最先进的重建性能时,与现有的轻量级SR网络相比。特别是我们的型号DARN-S在足够轻量化的前提下,仍然具有相当大的竞争优势。这得益于本文中提出的DARCB模块强大的特征表达能力。
本文的贡献如下:
1)设计DARCB组件以使用多级特征聚合来增强特征表示,与简单的CNN级联模块相比,实现了superior progress。
2)构建的DAB模块能够有效地应用浅层特征来抑制深层CNN特征提取过程中浅层特征丢失的现象。
3)本文提出了一种轻量级的图像超分辨率重建模型DARN,该模型在重建精度和重建效率之间取得了很好的折衷。

RELATED WORK

Deep Network for SR

SR任务自Dong等以来发展迅速。[5]提出了开创性的工作SRCNN,它显着优于传统方法。随着相关研究者对SR任务的深入研究,大模型、深度卷积、特征信息全球化等优化策略对模型性能的有效性逐渐得到体现。[8]在SR任务中取得了显着的改进,这证明了深度卷积可以提高模型性能。Lim等人采用更宽的模型结构来增加模型参数以实现更好的性能。EDPN将输入图像复制成序列,并采用可变形卷积来学习图像内部自相似性。Liu等人将window transformers引入SR域,这可以加强图像全球化信息的相关性。Chen等人结合了Swin-Transformer和通道注意力机制,提出的HAT模型刷新了最先进的SR性能。这些方法在性能上取得了很大的进步,但模型参数大、计算成本高,难以部署到实际应用中。

Lightweight SR

实际任务对轻量级模型的严格要求促使研究人员专注于开发更有效的SR模型。[19]中提出的IDN可以通过两个通道分别提取特征分割的结果。[30]中依靠金字塔结构逐渐重建输入图像的高频残差特征,并且使用反卷积代替双线性插值算法也可以大大降低计算复杂度。[31]中的作者选择放弃对一对高分辨率和低分辨率图像之间的映射的直接学习,而是通过将SR任务转换为多个基滤波器的线性回归来实现模型的加速推理。[32]中提出的像素注意力网络(PAN)采用双分支架构方法,该方法以较小的参数成本提高了最终重建质量。[23]中设计的多级信息蒸馏求精结构可以实现多级特征重用。Li等人引入了可分离卷积,以较少的参数使用实现更具竞争力的性能。与其他基于深度学习的SR模型不同,LAPAR将SR任务简化为具有多个基础过滤器的线性回归任务。
从远距离收集的遥感图像质量差。因此,遥感图像的超分辨率重建是一项非常有意义的工作。LGCNet是第一个基于CNN的遥感图像SR模型,它利用局部和全局表示来学习HR图像和放大LR图像之间的图像残差。SCViT提出了一种空间通道特征保留模型,该模型考虑了高空间分辨率图像的详细几何信息。TransENet采用多尺度Transformer来聚合多维空间特征,同时专注于图像空间自相似性。由FeNeT提出的LLB模块采用信道注意机制来构建上下分支的信息通信,同时通过信道分裂来确保模型轻量化。

NETWORK ARCHITECTURE

Framework View

对于输入的低质量卫星遥感图像ILR,我们的方法是重建一个高质量的图像IHR,这应该是接近地面真实IGT。如图2、我们的DARN主要由四部分组成:浅层特征提取模块Hmap、由N个DARCB级联而成的深层特征提取模块、多级特征融合块Hfusion和重构模块Hup
输入图像首先经过浅层特征提取块Hmap将低维图像映射到高维空间,丰富了图像细节的表示。然后,由多个DARCB组成的深度特征提取模块逐步细化提取的特征。它可以表示为在这里插入图片描述
在这里插入图片描述
轻量级模型的优化是指在较小的模型参数约束下提高模型的性能和速度。因此,融合模型不同深度的特征是提高轻量级模型性能的有效途径。如图2、融合模块通过对多阶段特征的融合,提高了特征的重用率。我们使用融合的功能Ffinal通过重建模块Hup恢复高质量的遥感图像。此外,合理应用残差学习是提高模型性能的有效途径,上述过程可以表示为在这里插入图片描述

Thinking ofLightweight Structure

网络模型体系结构的确定是模型设计阶段的第一个挑战。模型轻量化是在保证参数数量少、计算复杂度低、推理速度快的前提下,尽可能提高模型精度。常见的深度学习架构主要包括卷积、Transformer和MLP。Transformer和MLP具有较高的计算复杂度,因此它们不适合基于像素级计算的SR光任务。卷积推理速度快,计算复杂度低。合理的结构设计可以使卷盘在有限的参数下表现出优异的性能。在这里插入图片描述
结构轻量化的思路如图3所示。为了限制模型的参数数量,我们仅使用三个3 × 3普通卷积来组成深度特征提取组件。三个Conv组和ESA模块的串联构成了我们的模型设计的基线。然而,简单的卷积级联必然会给轻量级模型带来大量的特征冗余,这不可避免地限制了构件特征提取的效率。因此,我们结合知识提取和多级特征融合,设计了一个特征提取连接(FDC)模块,FDC具有以下两个显著优势:
1)FDC在有限数量的参数内融合多级特征的方式提高了特征利用率;
2)FDC采用的蒸馏操作可以细化信道的特征信息。
在融合阶段,减小了主分支CNN模块提取的深度特征对FDC模块输出的影响。通过对各级输出权值的分配,可以有效降低主分支产生的特征冗余和随机错误对模块性能的影响。
简单拼接形成的特征冗余和累积随机误差是当前CNN模型的常见问题。为了提高主分支的特征提取效率,本文设计了DAB模块,利用输入的细化特征来抑制整个主分支CNN模块细节特征的丢失浅层特征包含了原始图像的全部信息。CNN在提取深度特征时存在特征丢失、特征冗余和错误累积等问题。因此,浅层特征监督的CNN可以有效地减少提取过程中的错误积累。此外,DAB模块中的注意机制可以补偿信息的丢失,提高有效特征的比例,减少冗余信息。AnSRB被引入作为主分支的主要构建块,以保持网络足够轻。此外,用SRB替换Conv Groups模块可以使模型能够灵活地学习残差信息,并使模型更加鲁棒。由公式(2)可知,第K个DARCB的输入特征为FK-1,输出特征为FK。DARCB首先将输入特征FK−1分为主分支和分支两条路径进行特征提取,其中分支采用特征精化卷积来保留输入特征的原始信息FLB在这里插入图片描述
其中,HR是特征细化卷积。其次,使用两个RSB模块来提取深度特征,并且使用两个DAB模块来增强深度特征提取的效率。最后,采用卷积层来细化深度特征FDAB2。具体过程可以表示为在这里插入图片描述
其中,HS表示RSB特征提取模块,HAtt表示DAB中的注意力机制,g表示几个卷积层。最后,DARCB融合了多级特征在这里插入图片描述
为了进一步提高模型的代表性,同时保持模型的效率,我们引入了一个轻量级的ESA块。因此,可以得出结论,第k个DARN的输出特性为在这里插入图片描述
一般来说,本文提出的DARCB只使用三个3 × 3卷积层来提取深度特征,这保证了模型的亮度。DAB的建议加强了特征提取,使模型在保持亮度的同时可以达到高精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1002383.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pycharm 安装第三方库numpy,显示超时?

一、配置终端Terminal中的镜像源 1.更改pip源,在终端输入如下命令 pip config set global.index-url https://pypi.tuna.tshua.edu.cn/simple2.在终端使用pip install 安装第三方库 例如: pip install numpy二、配置仓库镜像源 1.第一步: 2.第二步:输…

JVM-垃圾回收器详解、参数配置

相关概念 并行和并发 并行(Parallel) 指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。 并发(Concurrent) 指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行…

2023-9-11 高斯消元解异或线性方程组

题目链接&#xff1a;高斯消元解异或线性方程组 #include <iostream> #include <algorithm>using namespace std;const int N 110;int n; int a[N][N];int gauss() {int c, r;for(c r 0; c < n; c ){int t r;for(int i r; i < n; i )if(a[i][c]){t i;b…

文件上传漏洞~php

目录 上传文件一般过滤方式 客服端校验 服务端校验 黑白名单机制 常规文件上传漏洞绕过 客户端绕过 1.游览器禁用JavaScript 2.正常burp suite抓包改包 服务端绕过 1.Content-Type绕过 2.黑名单绕过 1&#xff09;命名规则绕过 2&#xff09;大小写绕过 3&#x…

香橙派使用外设驱动库wiringOP 配合时间函数来驱动测距模块

模块认识和硬件接线 回顾之前关于超声波测距模块的学习&#xff1a; 使用HC-SR04实现超声波测距_hcsr04测距范围_mjmmm的博客-CSDN博客 并再次回顾香橙派的物理引脚对应&#xff1a; 所以这里&#xff0c;将VCC接到 2&#xff0c;GND接到 9&#xff0c;Trig接到 16&#xff0…

Material Design系列探究之LinearLayoutCompat

谷歌Material Design推出了许多非常好用的控件&#xff0c;所以我决定写一个专题来讲述MaterialDesign&#xff0c;今天带来Material Design系列的第一弹 LinearLayoutCompat。 以前要在LinearLayout布局之间的子View之间添加分割线&#xff0c;还需要自己去自定义控件进行添加…

【C++】哈希——哈希的概念,应用以及闭散列和哈希桶的模拟实现

前言&#xff1a; 前面我们一同学习了二叉搜索树&#xff0c;以及特殊版本的平衡二叉搜索树&#xff0c;这些容器让我们查找数据的效率提高到了O(log^2 N)。虽然效率提高了很多&#xff0c;但是有没有一种理想的方法使得我们能提高到O(1)呢&#xff1f;其实在C语言数据结构中&a…

【面试题】前端开发中如何高效渲染大数据量?

前端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★ 地址&#xff1a;前端面试题库 【国庆头像】- 国庆爱国 程序员头像&#xff01;总有一款适合你&#xff01; 在日常工作中&#xff0c;较少的能遇到一次性往页面中插入大量数据的场景…

智能合约漏洞案例,DEI 漏洞复现

智能合约漏洞案例&#xff0c;DEI 漏洞复现 1. 漏洞简介 https://twitter.com/eugenioclrc/status/1654576296507088906 2. 相关地址或交易 https://explorer.phalcon.xyz/tx/arbitrum/0xb1141785b7b94eb37c39c37f0272744c6e79ca1517529fec3f4af59d4c3c37ef 攻击交易 3. …

演讲笔记|《一个ppt者的成长故事》

前言&#xff1a;本文为《说服力&#xff1a;工作型PPT该这样做》作者、秋叶PPT团队成员秦阳于2017年1月15日在北京望界无界空间的演讲内容要点总结。 1. 结构化思考&#xff08;思考能力&#xff09; 体系&#xff1a;挖多个坑&#xff0c;多个视角&#xff08;构建体系 – 获…

Java 锁(synchronized)升级过程

java中的锁是针对对象而言的&#xff0c;它锁住的是一个对象&#xff0c;并且具有可重入的性质。 java中的对象内存结构如图所示 普通对象内存结构: 数组对象内存结构&#xff1a; 其中关于锁状态的记录主要存储在_mark&#xff08;markword&#xff09;中&#xff0c;markwor…

Android窗口层级(Window Type)分析

前言 Android的窗口Window分为三种类型&#xff1a; 应用Window&#xff0c;比如Activity、Dialog&#xff1b;子Window&#xff0c;比如PopupWindow&#xff1b;系统Window&#xff0c;比如Toast、系统状态栏、导航栏等等。 应用Window的Z-Ordered最低&#xff0c;就是在系…

C++之结构体智能指针shared_ptr实例(一百九十四)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

每日一博 - CRUD system VS Event sourcing design

文章目录 概念Arch Overview小结 概念 CRUD 系统和事件溯源设计是两种不同的软件架构方法&#xff0c;用于处理数据和应用程序的状态。以下是它们的区别以及各自适用的场景&#xff1a; CRUD 系统&#xff1a; CRUD 代表 Create&#xff08;创建&#xff09;、Read&#xff08…

JWT 使用教程 授权 认证

JWT 1.什么是JWT JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object. This information can be verified and trusted because it is digitally s…

Android Studio实机同WIFI调试

1.点击Pair using Wi-Fi 2.手机扫描跳出来的二维码 小米手机可搜索无线调试进行adb 调试

【AI】数学基础——最优化

从本质上讲&#xff0c;人工智能的目标就是最优化——在复杂环境中与多体交互中做出最优决策 几乎所有的人工智能问题都会归结为一个优化问题 在线性搜索中&#xff0c;确定寻找最小值时的搜索方向需要使用目标函数的一阶导数和二阶导数置信域的思想是先确定搜索步长&#xff0…

【源码】JavaWeb+Mysql招聘管理系统 课设

简介 用idea和eclipse都可以&#xff0c;数据库是mysql&#xff0c;这是一个Java和mysql做的web系统&#xff0c;用于期末课设作业 cout<<"如果需要的小伙伴可以http://www.codeying.top";可定做课设 线上招聘平台整合了各种就业指导资源&#xff0c;通过了…

Pytorch Advanced(三) Neural Style Transfer

神经风格迁移在之前的博客中已经用keras实现过了&#xff0c;比较复杂&#xff0c;keras版本。 这里用pytorch重新实现一次&#xff0c;原理图如下&#xff1a; from __future__ import division from torchvision import models from torchvision import transforms from PIL…

金蝶云星空和四化智造MES(WEB)单据接口对接

金蝶云星空和四化智造MES&#xff08;WEB&#xff09;单据接口对接 接入系统&#xff1a;四化智造MES&#xff08;WEB&#xff09; MES建立统一平台上通过物料防错防错、流程防错、生产统计、异常处理、信息采集和全流程追溯等精益生产和精细化管理&#xff0c;帮助企业合理安排…