Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化...

news2025/2/25 21:55:08

全文下载链接:http://tecdat.cn/?p=27784

河源市是国务院1988年1月7日批准设立的地级市,为了深入研究河源市公路交通与经济发展的关系,本文选取了1988-2014年河源市建市以来24年的地区生产总值(GDP)和公路通车里程(GL)的时间序列数据,其中公路通车里程(GL)用来反映河源市公路交通发展状况,地区生产总值(GDP)反映河源市的经济增长状况点击文末“阅读原文”获取完整代码数据

相关视频

为了消取数据的异方差,将原始数据取对数,分别记做LogGDP和LogGL,数据见表,采用ADF法对LogGDP和LogGL的平稳性进行单位根检验。

110b66aab0d2e492dee891cb4e246cf2.png

首先,对1988-2014年河源市24年的LogGDP和LogGL时间序列进行ADF单位根检验,单位根检验结果如表:

0dcb6d950d12de8e43a850c7ecda1bb6.png

98a59334d63c6529f3d10ee95ebc5283.png

t值和p值是等效的,p值要求小于给定的显著水平,越小越好,小于0.05.等于0是最好的。结果显示,LogGDP和LogGL的ADF值分别为-3.160130和-1.895105,均大于水平值,说明接受原假设,LogGDP和LogGL序列存在单位根,为非平稳序列。因此,需要对LogGDP和LogGL序列继续第二步检验,即对LogGDP和LogGL的一阶差分进行检验,结果如表 :

016072f2a01a0d46a6746416ec070767.png

49201c072f00986eb7d4a298ed629c85.png

结果显示,LogGDP和LogGL经过一阶差分检验,得到一阶差分序列D(LogGDP)和D(LogGL)的p值分别为0.0046和 0.0000,均小于0.05的显著值。由于D(LogGDP)和D(LogGL)都是单整序列,且单整阶数相同,均为I(1),所以LogGDP和LogGL两序列之间可能存在协整关系。


点击标题查阅往期内容

9fc8f72c79ec65a779964dde470edf5e.png

向量自回归VAR的迭代多元预测估计 GDP 增长率时间序列|数据分享

outside_default.png

左右滑动查看更多

outside_default.png

01

c01377539b72846be8dc071c25c2a81b.png

02

914f309021be7db29faac0f7ecea758d.png

03

482b5ce6287b0be9fcdbb6883c8c955e.png

04

65d06b1b731400ea4cf53755e8cd4b9a.png

GDP与公路交通里程GL协整性检验 

由序列的平稳性检验结果可知,河源市地区生产总值GDP和公里通车里程GL在1988-2014年这个时间序列中可能存在协整关系,协整检验的方法有Engle Granger两步法和Johansen极大似然法前者适合对两变量的模型进行协整检验后者适合在多变量的VAR模型中进行检验。

f8e4b275f539aeadfb2e137efbea878d.png

5d7ce38b47d002e7dc9f37e702999caf.png

利用engle和granger提出的两步检验法: 

5b9b52277d6f5dd65fc1e520881eb359.png

2d8d42e8649342c00027143f0c4e4125.png

首先建立OLS回归模型,结果为 

026636641bbaf69d87e32ab687578ec2.png

首先建立模型:y=ax+c+e,结果为loggdp= 2.332247*loggl + -7.210750

由ADF单位根检验结果可以看出上述变量是一阶平稳的符合granger因果关系检验的条件.现对各变量之间进行granger因果关系检验以确定它们之间的相互影响关系.取滞后阶数为2阶。

granger因果检验:

a25f5238ab620060fe13a9a93e274720.png

从结果可知拒绝loggl不能granger loggdp的假设,即loggl granger引起loggdp;但是不能拒绝loggdp不能granger引起loggl,即接受loggdp不能granger引起loggl。

97866a4ca76d4d742ffedc0570cfbc8c.png

同时,对方程的残差进行ADF检验结果可以看出残差序列不是平稳的,因此loggdp和loggl之间不存在协整关系。

建立VAR模型 

利用Eviews计量经济分析软件,本文对logGDP、loggl变量建立VAR(1)模型,对于VAR模型滞后阶数的选择,得到如表所列的5个评价指标,且5个指标均认为1阶合理即建立VAR(1)模型。

52a8e0f9ad142013f14f863787b1119a.png

同时,有两类回归统计量出现在VAR对象估计输出的底部:

ee445471cc71d7d0131ffba6fe679723.png

输出的第一部分的标准OLS回归统计量。根据各自的残差分别计算每个方程的结果,并显示在对应的列中。

输出的第二部分是VAR模型的回归统计量。

即协整方程式是:

LOGGDP=1.36534925116*LOGGDP(-1)-0.326349983643*LOGGDP(-2)+0.139864325278*LOGGL(-1)-0.239810823184*LOGGL(-2)+0.44758535991

d225ae5af0984b8e82452c244e9f8ef9.png

可以看到VAR模型的所有根模的倒数都小于1,即都在单位圆内,则该模型是稳定的。可以对VAR模型进行一个标准差的脉冲响应函数分析。

脉冲响应函数是用来衡量随机扰动项的一个标准差冲击对其他变量当前与未来取值的影响轨迹它能够比较直观地刻画变量之间的动态交互作用。

a54fe0222b4a59a6e9fd7cf59b40b1b3.png

本文继续利用方差分解技术分析经济增长速度、交通量增长之间的相互贡献率。进行方差分解示意图。

69e87b010ed8a4e0da62160ea0429ad8.png

各变量对经济增长速度的贡献率。

实证检验

为了检验所建立交通量VAR预测模型的效果,用EVIEWS软件对loggdp历史数据仿真,得到如下预测模型。

loggdp  = @coef(1) loggdp(-1)  + @coef(2) loggdp(-2)  + @coef(3) loggl(-1)  + @coef(4) loggl(-2)  + @coef(5)

@coef(1) =  1.3653493

@coef(2) = -0.3263500

@coef(3) =  0.1398643

@coef(4) = -0.2398108

@coef(5) =  0.4475854

用VAR方法建立的GDP预测模型预测精度较高,效果较好。此外,可以得到如下的比较图:

ffd81991bf0e0c2d9eafb1432ddd857d.png

同时,对loggl历史数据仿真,得到如下预测模型。

loggl  = @coef(1) loggdp(-1)  + @coef(2) loggdp(-2)  + @coef(3) loggl(-1)  + @coef(4) loggl(-2)  + @coef(5)

@coef(1) =  0.9502916

@coef(2) = -0.8089714

@coef(3) =  0.5952874

@coef(4) = -0.0153147

@coef(5) =  1.7812591

以及历年loggl预测值、loggl实际值。

ce2def2900e9f5eb009435adeefa5bff.png

采用VAR方法建立的GDP预测模型有一个显著优点,即它不用对当期的GDP或其他变量作出预测,只用历史的GDP和交通量数据,就可以对GDP做出比较准确的预测,由于减少中间变量预测的传递,相应提高了模型预测精度。


edf9c35dbab745fc260664991a7319cf.png

点击文末“阅读原文”

获取全文完整资料。

本文选自《Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化》。

9cca92da2e9a1cf3b49293783f12d050.jpeg

e9029a8b8bde7a7e30514b25d7712ffa.png

点击标题查阅往期内容

R语言实现向量自回归VAR模型

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据

R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化

R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

R语言VAR模型的不同类型的脉冲响应分析

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

R语言时变参数VAR随机模型

R语言估计时变VAR模型时间序列的实证研究分析案例

R语言向量自回归模型(VAR)及其实现

R语言实现向量自回归VAR模型

R语言估计时变VAR模型时间序列的实证研究分析案例

Python和R用EWMA,ARIMA模型预测时间序列

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

310315a651158bb10d23a7138787ff2c.png

2c02d97141276b39236c716b7b81049b.jpeg

783ec403bbe0654d677d02d985bd678e.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/990793.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue 子组件向父组件传递参数 子传父

子组件中写: this.$emit(RowCount,res.data.RowCount); 父组件中写: getMFGLRowCount(val){ //父组件中的方法: 接收子组件传过来的参数值赋值给父组件的变量 //this.totalCount val; alert("这…

CSS整理

目录 CSS中的& 弹性(display:flex)布局 flex的属性 justify-content align-items flex:1 flex属性 flex-grow:项目的放大比例 flex-shrink:收缩 flex-basis:初始值,项目占据的主轴空间&…

javascript | 变量、函数、属性的命名规则

javascript标识符的命名规则 变量、函数、属性的名字、或者函数的参数,都可称为标识符。标识符可以是按照下列格式规则组合起来的一个或者多个字符。 第一个字符必须是一个字母、下划线_、或美元符号$。数字不可以作为标识符的首字符。其他字符可以是数字、字母、…

华为云云耀云服务器L实例评测|在 Centos Docker 中使用Nginx部署Vue项目

目录 前言 项目构建 使用CentOS部署 安装Nginx 配置Nginx 项目启动 访问重定向 使用Docker部署 编写docker文件 dockerfile nginx dockercompose 项目启动 前言 本期我们测试在云耀云服务器L实例中分别演示如何在 系统镜像Centos 与 应用镜像 Docker 中使用Nginx…

Java多线程(三)多线程的模式--(阻塞队列,定时器,线程池)

多线程的模式--(阻塞队列,定时器,线程池) 多线程模式: 阻塞队列(线程安全) 重点是如何自己去实现这种数据结构: ​编辑 定时器: 实现一个定时器: 线程…

两种解法解决LCR 008. 长度最小的子数组【C++】

文章目录 [LCR 008. 长度最小的子数组](https://leetcode.cn/problems/2VG8Kg/description/)解法暴力解法滑动窗口(双指针法) LCR 008. 长度最小的子数组 解法 暴力解法 //暴力解法: //使用双for循环依次遍历数组,罗列出所有情况…

HTML的段落中怎么样显示出标签要使用的尖括号<>?

很简单&#xff1a; 符号 < 用 < 替代&#xff1b; 符号 > 用 > 替代。 示例代码如下&#xff1a; <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>HTML中怎样打出尖括号</title> </head> <b…

AI图片生成 discord 使用midjourney

参考: 不用找咒语了&#xff01;Midjourney图生文功能特征解析&#xff0c;玩转Describe命令&#xff0c;快速搞定AI绘画_哔哩哔哩_bilibili 1 登录 discord 2 点发现 找 midjourney 3 创建 服务器 -> 亲自创建 4 选 仅供我和我的朋友使用 5 起个 服务器名字 6 加bot 由于…

常见的旅游类软文类型分享

假期将至&#xff0c;越来越多人选择出门旅游度过假期&#xff0c;那么各大旅游品牌应该怎么让自己的旅游软文在众多品牌中脱颖而出呢&#xff1f;接下来媒介盒子就给大家分享几个最能吸引受众的旅游类型软文。 一、攻略类软文 和普通的攻略不一样&#xff0c;普通的攻略以用户…

Element--生成不定列的表格

1、对于一些场景&#xff0c;前端可能需要展示不定列数的数据&#xff1b;譬如考勤&#xff0c;可能有的人是一天一次上下班打卡&#xff0c;有的人是一天两次上下班打卡。这个时候统计就需要更具人员做不同的展示&#xff0c;不能固定在前端写死列的属性。 2、代码示例 &…

Linux命令200例:nohup用于在后台运行命令

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌。CSDN专家博主&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0…

直播APP源码搭建:核心的服务器系统

在现代科技的推动下&#xff0c;网络衍生出了各种各样的技术&#xff0c;每个技术都被应用到需要的APP上&#xff0c;直播APP源码搭建出来的APP就是其中的一个&#xff0c;然而&#xff0c;这些技术能够成功的在直播APP源码搭建的APP中稳定的为用户们提供功能与服务&#xff0c…

内网穿透实现Windows远程桌面访问Ubuntu,简单高效的远程桌面解决方案

文章目录 前言1. ubuntu安装XRDP2.局域网测试连接3.安装cpolar内网穿透4.cpolar公网地址测试访问5.固定域名公网地址 前言 XRDP是一种开源工具&#xff0c;它允许用户通过Windows RDP访问Linux远程桌面。 除了Windows RDP外&#xff0c;xrdp工具还接受来自其他RDP客户端(如Fre…

Windows环境下Springboot3+Graalvm+Idea 打包成原生镜像 踩坑

https://github.com/oracle/graal/https://github.com/graalvm/graalvm-ce-builds/releases/对应关系graalvm-ce-java17-windows-amd64-X.X.X.zipnative-image-installable-svm-java17-windows-amd64-X.X.X.jar本人使用:graalvm-ce-java17-windows-amd64-23.0.1.zipnative-imag…

华为云云耀云服务器L实例评测|华为云云耀云服务器L实例评测使用

作者简介&#xff1a; 辭七七&#xff0c;目前大一&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f…

Canonical 发布公告,Ubuntu可以在 Windows 10 商店找到

导读Canonical 前几天正式发布公告称&#xff0c;“Windows 10 Loves Ubuntu”&#xff0c;其 Ubuntu 16.04 LTS 在 Windows 10 商店中以应用的方式出现&#xff0c;这是继 openSUSE 及 SLES 之后&#xff0c;又一款可以从 Windows 10 商店中下载的 Linux 操作系统。 一些用户已…

Ubuntu----Linux命令-----防火墙(查看、关闭、启动)

一、查看防火墙状态 命令&#xff1a;ufw status 说明&#xff1a; 活动&#xff1a;防火墙是开启的 不活动&#xff1a;防火墙是关闭的 二、开启防火墙 命令&#xff1a;sudo ufw enable 开启防火墙后&#xff0c;可以查看防火墙状态 三、关闭防火墙 命令&#xff1a;sud…

【Python】Python运算符/部分函数对应的双下划线魔法方法

先说下Python版本&#xff1a;【Python 3.7.8】 以下用图片表格展示&#xff0c;一是防扒&#xff0c;二是没精力改成md格式。 还有就是内容肯定没有完全包含(而且也很难做到)&#xff0c;像是__reduce__与py自带模块pickle有关(pickle用于对象序列化/反序列化)、sys.getsizeo…

【Redis】如何保证Redis缓存与数据库的一致性?

文章目录 1、四种同步策略2、更新缓存还是删除缓存2.1 更新缓存2.2 删除缓存 3、先操作数据库还是缓存3.1 先删除缓存再更新数据库3.2 先更新数据库再删除缓存 4、延时双删4.1 采用读写分离的架构怎么办&#xff1f; 5、利用消息队列进行删除的补偿 1、四种同步策略 想要保证缓…

迅为RK3588在 Linux 系统中使用 NPU

下载 rknpu2 并拷贝到虚拟机 Ubuntu&#xff0c;RKNPU2 提供了访问 rk3588 芯片 NPU的高级接口。 下载地址为“iTOP-3588 开发板\02_【iTOP-RK3588 开发板】开发资料\12_NPU 使用配套资料\01_rknpu2 工具” 对于 RK3588 来说&#xff0c;Linux 平台 RKNN SDK 库文件为 librknn…