基于googlenet网络的动物种类识别算法matlab仿真

news2024/12/24 8:30:46

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.................................................................
% 获取输入层的尺寸
Input_Layer_Size = net.Layers(1).InputSize(1:2);

% 调整训练、验证和测试数据集的图像尺寸

Resized_Training_Dataset   = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset    = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);


% 设置训练参数
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
    'MiniBatchSize', Minibatch_Size, ...
    'MaxEpochs', maxEpochs, ...
    'InitialLearnRate', 1e-3, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', Resized_Validation_Dataset, ...
    'ValidationFrequency', Validation_Frequency, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
% 使用训练数据训练新网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);

save gnet.mat   
60

4.算法理论概述

        动物种类识别算法基于深度学习技术,尤其是卷积神经网络(CNN),如GoogleNet。这种算法的主要原理是通过学习和识别图像中的特征来预测动物的种类。

        GoogleNet,也被称为Inception v1,是在2014年由Google研发的深度学习模型。GoogleNet的特点是深度较大,增加了网络的复杂性,且引入了"Inception模块",这个模块允许网络在同一层中处理不同大小的卷积核,从而能够捕捉到图像的不同尺度的特征。

基于GoogleNet的动物种类识别算法主要包括以下步骤:

  1. 数据预处理:首先,我们需要对图像进行预处理,包括调整大小,归一化像素值等。
  2. 构建GoogleNet模型:接下来,我们需要构建GoogleNet模型。GoogleNet模型由多个Inception模块和其他层组成。
  3. 训练模型:然后,我们用标注过的动物图像数据集来训练这个模型。这个过程中,模型会学习到如何识别动物的各种特征。
  4. 测试模型:最后,我们用一些没有在训练集中出现过的图像来测试模型的性能。

至于数学公式,卷积神经网络的主要运算包括卷积(Convolution),池化(Pooling),激活函数(Activation Function)等。这里涉及的公式比较复杂,我会尽量简化一下:

  1. 卷积:假设我们有一个输入图像X和一个卷积核K,那么卷积运算可以用以下公式表示:

s(t) = (X * K)(t) = ∫X(a)K(t - a)da

其中*代表卷积运算,t是一个二维坐标。

  1. 池化:池化操作一般使用最大池化(Max Pooling)或平均池化(Average Pooling)。以最大池化为例,假设我们有一个2x2的池化窗口,那么最大池化结果就是这个窗口中的最大值。
  2. 激活函数:激活函数有很多种,比如ReLU(Rectified Linear Unit),Sigmoid等。ReLU的函数形式可以表示为:

f(x) = max(0, x)

        这只是卷积神经网络中的一部分数学原理。实际上,深度学习涉及到的数学和计算机科学知识非常广泛,包括线性代数,微积分,概率论,优化理论等。

        以上是基于GoogleNet的动物种类识别算法的基本原理和数学公式。由于这个领域的研究和实践仍在不断发展,可能会有更先进的模型和算法被开发出来。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/989675.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

异步编程 - 13 高性能线程间消息传递库 Disruptor

文章目录 Disruptor概述Disruptor中的核心术语Disruptor 流程图 Disruptor的特性详解基于Disruptor实现异步编程 Disruptor概述 Disruptor是一个高性能的线程间消息传递库,它源于LMAX对并发性、性能和非阻塞算法的研究,如今构成了其Exchange基础架构的核…

NIFI使用InvokeHTTP发送http请求

说明 这里介绍四种平时常用的http请求方法:GET、POST、PUT、DELETE。 在官方的介绍文档中关于InvokeHTTP处理器的描述是这么说的: An HTTP client processor which can interact with a configurable HTTP Endpoint. The destination URL and HTTP Met…

java 企业工程管理系统软件源码 自主研发 工程行业适用

工程项目管理软件(工程项目管理系统)对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营,全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&am…

网工内推 | 云架构运维、网络工程师,base北京,最高20k

01 协合新能源 招聘岗位:IT运维工程师 职责描述: 1、对集团内使用云计算架构(Kubernetes)的系统进行规划、运维及管理相关工作。 2、对集团数据中心系统的大数据基础架构(Cloudera Distribution Hadoop)的…

【办公类-16-06】20230901大班运动场地分配表-斜线排列、5天循环、不跳节日,手动修改节日”(python 排班表系列)

背景需求: 大班组长发来一个“运动排班”的需求表:“就是和去年一样的每个班的运动排班,就因为今年大班变成7个班,要重新做一份,不然我就用去年的那份了(8个大班排班)” (拆了中8班…

STM32定时器的One Pulse Mode,OPM应用

文章目录 OPM应用1-精准延时应用2-精准定时 OPM T IMx_CR1的OPM位 位 3 OPM:单脉冲模式 (One-pulse mode) 0:计数器在发生更新事件时不会停止计数 1:计数器在发生下一更新事件时停止计数(将 CEN 位清零) 应用1-精准延时…

光学显微镜算法(OMA)(含MATLAB代码)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年…

期权开户必读:费用、保证金和稳定性安全性必须兼备

期权开户的核心是判断50ETF方向,上涨下跌都能赚钱,其次选择0门槛期权平台要考量期权手续费和安全性是第一位,下文为大家科普期权开户的核心:费用、保证金和稳定性安全性必须兼备的知识点。本文来自 :期权酱 一、期权开…

如何把Android Framework学彻底?一条龙学习

Framework通俗易懂 平时学习 Android 开发的第一步就是去学习各种各样的 API,如 Activity,Service,Notification 等。其实这些都是 Framework 提供给我们的。Framework 层为开发应用程序提供了非常多的API,我们通过调用这些 API …

自然语言处理——数据清洗

一、什么是数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 ——百度百科 二、为什么要数据清洗 现实生…

Apipost:你API管理中的得力助手

API管理的难点在哪? 相信无论是前端,还是后端的测试和开发人员,都遇到过这样的困难。不同工具之间数据一致性非常困难、低效。多个系统之间数据不一致,导致协作低效、频繁出问题,开发测试人员痛苦不堪。 开发人员在 …

STM32F4X RTC

STM32F4X RTC 什么是RTCSTM32F4X RTCSTM32F4X RTC框图STM32F4X RTC计数频率STM32F4X RTC日历STM32F4X RTC闹钟 STM32F4X RTC例程 什么是RTC RTC全程叫Real-Time Clock实时时钟,是MCU中一个用来计时的模块。RTC的一个主要作用是用来显示实时时间,就像日常…

Visual Studio 2019下使用C++与Python进行混合编程——环境配置与C++调用Python API接口

前言 在vs2019下使用C与Python进行混合编程,在根源上讲,Python 本身就是一个C库,那么这里使用其中最简单的一种方法是把Python的C API来嵌入C项目中,来实现混合编程。当前的环境是,win10,IDE是vs2019,python版本是3.9&#xff0c…

一个帮各位填秋招表格省一点事的浏览器插件

最近应该很多和我一样的双非鼠鼠在秋招等面试,而且处于海投阶段,为了不忘记投了哪些公司,可以用这样一个表格来记录: 其中有些字段,比如状态、投递时间、查看进度的网址其实可以不手动输入,所以搞个插件来…

2023数模国赛C 题 蔬菜类商品的自动定价与补货决策-完整版创新多思路详解(含代码)

题目简评:看下来C题是三道题目里简单一些的,考察的点比较综合,偏数据分析。涉及预测模型和运筹优化(线性规划),还设了一问开放型问题,适合新手入门,发挥空间大。 题目分析与思路: 背景&#x…

部署zookeeper集群

zookeeper和jdk下载地址 jdk 链接:https://pan.baidu.com/s/13GpNaAiHM5HSDJ66ebBtEg 提取码:90se zookeeper 链接:https://pan.baidu.com/s/1nSFKEhSGNiwgSPZWdb7hkw 提取码:u5l2 在所有的机器上面执行下面步骤: 1.上…

C++的纯虚函数和抽象类

在C++中,可以将虚函数声明为纯虚函数,语法格式为: virtual 返回值类型 函数名 (函数参数) = 0; 纯虚函数没有函数体,只有函数声明,在虚函数声明的结尾加上=0,表明此函数为纯虚函数。 最后的=0并不表示函数返回值为0,它只起形式上的作用,告诉编译系统“这是纯虚函数”。…

继承的偏移量问题

下面是实际测试: p1 p3 ! p2 Base1* p1 &d; Derive* p3 &d;! Base2* p2 &d; 图解:

斯坦福小镇升级版——AI-Town搭建指南

导语: 8月份斯坦福AI小镇开源之后,引起了 AIGC 领域的强烈反响,但8月份还有另一个同样非常有意义的 AI-Agent 的项目开源,a16z主导的 AI-Town 本篇文章主要讲解如何搭建该项目,如有英文基础或者对这套技术栈熟悉&#…

监控系统prometheus部署

wget -c https://github.com/prometheus/prometheus/releases/downloa d/v2.37.1/prometheus-2.37.1.linux-amd64.tar.gz下载必要的组件。 mkdir -p /opt/prometheus创建目录。 此文章为9月Day 8学习笔记,内容来源于极客时间《运维监控系统实战笔记》。