计算机竞赛 基于深度学习的植物识别算法 - cnn opencv python

news2024/10/7 9:23:26

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码



    import tensorflow as tf
    import numpy as np
    from tensorflow.keras import layers, Sequential, Model
    
    class ConvBNReLU(layers.Layer):
        def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):
            super(ConvBNReLU, self).__init__(**kwargs)
            self.conv = layers.Conv2D(filters=out_channel, 
                                      kernel_size=kernel_size, 
                                      strides=strides, 
                                      padding='SAME', 
                                      use_bias=False,
                                      name='Conv2d')
            self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')
            self.activation = layers.ReLU(max_value=6.0)   # ReLU6
            
        def call(self, inputs, training=False, **kargs):
            x = self.conv(inputs)
            x = self.bn(x, training=training)
            x = self.activation(x)
            
            return x


    class InvertedResidualBlock(layers.Layer):
        def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):
            super(InvertedResidualBlock, self).__init__(**kwargs)
            self.hidden_channel = in_channel * expand_ratio
            self.use_shortcut = (strides == 1) and (in_channel == out_channel)
            
            layer_list = []
            # first bottleneck does not need 1*1 conv
            if expand_ratio != 1:
                # 1x1 pointwise conv
                layer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))
            layer_list.extend([
                
                # 3x3 depthwise conv 
                layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),
                layers.ReLU(max_value=6.0),
                
                #1x1 pointwise conv(linear) 
                # linear activation y = x -> no activation function
                layers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')
            ])
            
            self.main_branch = Sequential(layer_list, name='expanded_conv')
        
        def call(self, inputs, **kargs):
            if self.use_shortcut:
                return inputs + self.main_branch(inputs)
            else:
                return self.main_branch(inputs)  




4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):
    shift_x = x - np.max(x)    # 防止输入增大时输出为nan
    exp_x = np.exp(shift_x)
    return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
 
# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()


    # 二分类 损失函数
    loss = torch.nn.BCELoss()
    l = loss(pred,real)


    # 多分类损失函数
    loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay'] # 权重衰减系数
            momentum = group['momentum'] # 动量因子,0.9或0.8
            dampening = group['dampening'] # 梯度抑制因子
            nesterov = group['nesterov'] # 是否使用nesterov动量

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0: # 进行正则化
                	# add_表示原处改变,d_p = d_p + weight_decay*p.data
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p] # 之前的累计的数据,v(t-1)
                    # 进行动量累计计算
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                    	# 之前的动量
                        buf = param_state['momentum_buffer']
                        # buf= buf*momentum + (1-dampening)*d_p
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov: # 使用neterov动量
                    	# d_p= d_p + momentum*buf
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
				# p = p - lr*d_p
                p.data.add_(-group['lr'], d_p)

        return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/989153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数仓学习之DWD学习

登录不是原子行为&#xff0c;而登录成功是&#xff0c; 而支付也不是原子&#xff0c;也分成功失败。 什么是原子型? 一条线 注意一下密码, mysql的密码是MD5加密,而MD5的长度为固定的32 1.怎么构建事务表? 1.确定表名 2.确定一行数据所表示的含义 3.确定列定义 4.确定度…

【算法训练笔记】栈的OJ题

&#x1f525;&#x1f525; 欢迎来到小林的博客&#xff01;&#xff01;       &#x1f6f0;️博客主页&#xff1a;✈️林 子       &#x1f6f0;️博客专栏&#xff1a;✈️ 小林的算法训练笔记       &#x1f6f0;️社区 :✈️ 进步学堂       …

rsa加密解密java和C#互通

前言 因为第三方项目是java的案例&#xff0c;但是原来的项目使用的是java&#xff0c;故需要将java代码转化为C#代码&#xff0c;其中核心代码就是RSA加密以及加签和验签&#xff0c;其他的都是api接口请求难度不大。 遇到的问题 java和c#密钥格式不一致&#xff0c;java使…

C++QT day3

1> 自行封装一个栈的类&#xff0c;包含私有成员属性&#xff1a;栈的数组、记录栈顶的变量 成员函数完成&#xff1a;构造函数、析构函数、拷贝构造函数、入栈、出栈、清空栈、判空、判满、获取栈顶元素、求栈的大小 2> 自行封装一个循环顺序队列的类&#xff0c;包含…

backward问题记录

大致问题是这样的 模型先计算一个输出 然后根据这个输出&#xff0c;用lbfgs去优化另一个变量 最后优化模型&#xff0c;大致代码如下 optimizer optim.Adam(model.parameters(), lrlr)for inputs in dataloader:outputs model(inputs)u outputs.reshape(1, -1, 1)beta to…

扫地机器人还能创新吗?云鲸给了个Yes

作者 | 辰纹 来源 | 洞见新研社 1996年&#xff0c;瑞典家电巨头伊莱克斯推出全球首款扫地机器人“三叶虫”。 与现在的产品相比&#xff0c;“三叶虫”靠随机碰撞的模式对空间进行清扫&#xff0c;清洁效率很低&#xff0c;市场渗透率也不高&#xff0c;但并不妨碍戴森、iRo…

表单引擎的自定义控件的概念与设计

基本概念 概述 控件的定义&#xff1a;用于展示或者采集数据的表单元素&#xff0c;称为控件,比如&#xff1a;文本框、下拉框、单选按钮、从表等.自定义控件&#xff1a;表单引擎提供的基础控件之外的控件称为自定义控件, 这些控件由开发人员自己定义&#xff0c;比如&#…

更灵活的 serverless framework 配置文件

更灵活的 serverless framework 配置文件 前言 再经过前置教程的部署之后&#xff0c;不知道你有没有注意这样一个问题&#xff0c;就是我们部署的函数名&#xff0c;以及 API网关 的 endpoint&#xff0c;它们的名称和路径都带一个 dev? 这个就是 stage 导致的了&#xff…

美客多选品趋势分析,美客多选品时的注意事项

都知道选品的重要性&#xff0c;美客多这个平台也一样&#xff0c;选品选对了肯定事半功倍&#xff0c;本文介绍了美客多选品趋势分析&#xff0c;美客多选品时的注意事项&#xff0c;一起来了解下吧。、 美客多选品趋势分析 1、墨西哥站&#xff1a;跨境支付高&#xff0c;偏…

ESP32C3 PWM输出

目前对于遥控双发差速小飞机计划采用如下架构&#xff1a; ESP32C3做主控&#xff0c;兼具遥控收发和飞行控制锂电池供电&#xff0c;带电量检测双发&#xff0c;720空心杯电机&#xff0c;55mm桨&#xff0c;带电流检测MPU6050加速度计和陀螺仪预留4个控制信号输出 马达控制要…

(Java)多线程带来的的风险-线程安全 (第一部)

前言&#xff1a;线程安全是整个多线程中&#xff0c;最为复杂的部分&#xff0c;也是最重要的部分。 目录 什么是线程安全问题&#xff1f; 线程不安全的原因 ⁜⁜总结 &#xff1a;线程安全问题的原因 ⁜⁜ 解决方法1 ——加锁 synchronized &#xff08;监视器锁monitor…

算法与设计分析--实验一

蛮力算法的设计与分析&#xff08;暴力&#xff09; 这次是某不知名学院开学课程的第一次实验&#xff0c;一共5道题&#xff0c;来自力扣 第一题.216组合总和*力扣题目链接 第一道题是经典的树型回溯 class Solution { public:vector<vector<int>> combinatio…

红米Note12Turbo解锁BL刷入PixelExperience原生ROM系统详细教程

红米Note12Turbo的兄弟是国外POCO F5 机型&#xff0c;并且该机性价比非常高&#xff0c;国内外销量也还可以&#xff0c;自然不缺第三方ROM适配。目前大家心心念念的原生PixelExperience已成功发布&#xff0c;并且相对来说&#xff0c;适配程度较高&#xff0c;已经达到日用的…

sqlserver union和union all 的区别

1.首先在数据库编辑1-40数字&#xff1b; 2.查询Num<30的数据&#xff0c;查询Num>20 and Num<40的数据&#xff0c;使用union all合并&#xff1b; 发现30-20的数字重复了&#xff0c;可见union all 不去重&#xff1b; 3.查询Num<30的数据&#xff0c;查询Num…

嵌入式Linux驱动开发(同步与互斥专题)(一)

一、内联汇编 1.1、语法 内联汇编实现加法 1.2、同步互斥失败的例子 进程A在读出valid时发现它是1&#xff0c;减1后为0&#xff0c;这时if不成立&#xff1b;但是修改后的值尚未写回内存&#xff1b;假设这时被程序B抢占&#xff0c;程序B读出valid仍为1&#xff0c;减1后为…

Callable、Future和FutureTask

一、Callable 与 Runnable 先说一下java.lang.Runnable吧&#xff0c;它是一个接口&#xff0c;在它里面只声明了一个run()方法&#xff1a; public interface Runnable {public abstract void run(); }由于run()方法返回值为void类型&#xff0c;所以在执行完任务之后无法返…

云数据库知识学习——概述

一、云计算是云数据库兴起的基础 云计算是分布式计算、并行计算、效用计算、网络存储、虚拟化、负载均衡等计算机和网络技术发展融合的产物。云计算是由一系列可以动态升级和被虚拟化的资源组成的&#xff0c;用户无需掌握云计算的技术&#xff0c;只要通过网络就可以访问这些资…

关于近期小程序测试的常见漏洞演示

本章节将为大家介绍一下小程序常见的漏洞的展示案例&#xff0c;包括支付业务逻辑漏洞、任意用户登录漏洞、水平越权漏洞等高危漏洞。 以上小程序测试均获取授权&#xff0c;并且客户均已得到修复(仅供学习&#xff0c;请勿恶意攻击)​ 关于微信小程序如何拦截数据包&#xff…

Nat. Communications Biology2022 | PepNN+: 用于识别多肽结合位点的深度关注模型

论文标题&#xff1a;PepNN: a deep attention model for the identification of peptide binding sites 论文链接&#xff1a;PepNN: a deep attention model for the identification of peptide binding sites | Communications Biology 代码地址&#xff1a;oabdin / PepN…

csp非零段划分

202109-2 非零段划分 计算机软件能力认证考试系统 code&#xff1a; #include<bits/stdc.h> using namespace std; const int N5e59;int a[N];vector<int> v[N];//v[i]存放所有元素值为i的元素的下标 int main() {ios::sync_with_stdio(false);cin.tie(0),cout.…