【已更新代码图表】2023数学建模国赛E题python代码--黄河水沙监测数据分析

news2025/4/27 19:38:01

E 题 黄河水沙监测数据分析
黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变
化和人民生活的影响,以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾
等方面都具有重要的理论指导意义。
附件 1 给出了位于小浪底水库下游黄河某水文站近 6 年的水位、水流量与含沙量的实际监
测数据,附件 2 给出了该水文站近 6 年黄河断面的测量数据,附件 3 给出了该水文站部分监测
点的相关数据。请建立数学模型研究以下问题:
问题 1 研究该水文站黄河水的含沙量与时间、水位、水流量的关系,并估算近 6 年该水
文站的年总水流量和年总排沙量。

#完整代码:https://mbd.pub/o/bread/mbd-ZJ2cl59p

在这里插入图片描述
在这里插入图片描述

#思路

有6年每天多个时刻下的水位、流量,然后含沙量是只有两千条数据,
其他是空着的,他就问研究该水文站黄河水的含沙量与时间、水位、水流量的关系

先预测剩下的含沙量

最后在计算一下近 6 年该水文站的年总水流量和年总排沙量。

考虑到数据的时序性 通过线性回归的代码 进行拟合

通过两千条数据拿来训练,然后预测剩下的一万四千条数据

#千千数模 q群:790539996
#代码购买链接:https://www.jdmm.cc/file/2709544/
#倒卖欢迎举报 举报有奖


# In[2]:


table = pd.read_excel(r"./data/附件1.xlsx")
for i in range(2017, 2017+5):
#     移除table最后一条数据(重复了)
#     print(table.iloc[len(table)-1])
    table.drop((len(table)-1),inplace=True)
    i = str(i)
    temp = pd.read_excel(r"./data/附件1.xlsx",sheet_name = i)
    table = pd.concat([table, temp])
    table = table.reset_index(drop=True)
table


# In[3]:


# 补齐时间
table['年'].fillna(method='ffill', inplace=True)
table['月'].fillna(method='ffill', inplace=True)
table['日'].fillna(method='ffill', inplace=True)
table


# In[13]:


# 数据预处理
time_list = []
for i in range(len(table)):
    m, d, h = str(int(table.iloc[i,1])), str(int(table.iloc[i,2])),str(table.iloc[i,3])
    if(int(table.iloc[i,1])<10):
        m = "0" + str(int(table.iloc[i,1]))
    if(int(table.iloc[i,2])<10):
        d = "0" + str(int(table.iloc[i,2])) 
#     print(m,d)
    time = str(int(table.iloc[i,0]))+"-"+ m+"-"+ d +" "+ h
#     print(time)
    time_list.append(time)

temp = pd.DataFrame(time_list, columns=["时刻"])
temp["时刻"]= pd.to_datetime(temp["时刻"])
# temp.to_csv('example3.csv', index=False)
# temp
table1 = pd.concat([table, temp],axis=1)
# table

df =table1.iloc[:, [7,4,5,6]]
df.to_csv('example2.csv', index=False)

# 将索引转换为日期时间
# df.set_index("时刻", inplace=True)
df


# In[5]:


df["时刻"]= pd.to_datetime(df["时刻"])
# 将时间序列转换为数值型特征
df['时刻'] = df['时刻'].apply(lambda x: x.timestamp())
df


# In[6]:


# 提取时间、水位、水流量和含沙量的数据
data = df[pd.notna(df["含沙量(kg/m3) "])]
X = data[['时刻', '水位(m)', '流量(m3/s)']]
y = data['含沙量(kg/m3) ']
y


# In[7]:


# 建立线性回归模型
#LSTM 
model = LinearRegression()
model.fit(X, y)


# In[8]:


new_df = df[pd.isna(df.loc[:,"含沙量(kg/m3) "])]
new_X = new_df.loc[:,['时刻', '水位(m)', '流量(m3/s)']]
new_df.loc[:,"含沙量(kg/m3) "] = model.predict(new_X)
new_df


# In[9]:


# 使用 fillna 方法填充空白部分
table['含沙量(kg/m3) '].fillna(new_df['含沙量(kg/m3) '], inplace = True)
# table.to_csv('example.csv', index=False)
table


# In[10]:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/986165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

postgresql-使用plpgsql批量插入用户测试数据

目的 使用plpgsql批量插入用户测试数据 ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤我是分割线❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ 我的环境 客户端&#xff1a;windows 版pgadmin4 服务端&#xff1a;linux版PostgreSQL 15.4 ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤…

Spring整合tomcat的WebSocket详细逻辑(图解)

主要解决存在的疑问 为什么存在2种spring整合websocket的方式&#xff0c;一种是使用ServerEndpoint注解的方式&#xff0c;一种是使用EnableWebSocket注解的方式&#xff0c;这2种有什么区别和联系&#xff1f;可以共存吗&#xff1f;它们实现的原理是什么&#xff1f;它们的各…

数据接口工程对接BI可视化大屏(二)创建BI空间

第2章 创建BI空间 2.1 SugarBI介绍 网站地址:https://cloud.baidu.com/product/sugar.html SugarBI是百度推出的自助BI报表分析和制作可视化数据大屏的强大工具。 基于百度Echarts提供丰富的图表组件&#xff0c;开箱即用、零代码操作、无需SQL&#xff0c;5分钟即可完成数…

C#__线程的优先级和状态控制

线程的优先级&#xff1a; 一个CPU同一时刻只能做一件事情&#xff0c;哪个线程优先级高哪个先运行&#xff0c;优先级相同看调度算法。 在Thread类中的Priority属性&#xff08;Highest,Above,Normal,BelowNormal,Lowest&#xff09;可以影响线程的优先级 关于…

PHP反序列化漏洞

一、序列化&#xff0c;反序列化 序列化&#xff1a;将php对象压缩并按照一定格式转换成字符串过程反序列化&#xff1a;从字符串转换回php对象的过程目的&#xff1a;为了方便php对象的传输和存储 seriallize() 传入参数为php对象&#xff0c;序列化成字符串 unseriali…

HTTP代理如何设置

HTTP代理是一种非常重要的网络工具&#xff0c;它可以帮助我们在访问互联网时提高访问速度&#xff0c;保护用户隐私等等。在使用HTTP代理时&#xff0c;需要先进行设置。下面就来介绍一下HTTP代理如何设置。 一、了解HTTP代理 在开始设置HTTP代理之前&#xff0c;我们需要先了…

系统架构技能之设计模式-组合模式

一、上篇回顾 我们上篇主要讲述了结构型模式中的外观模式&#xff0c;外观模式作为结构型模式中的一个简单又实用的模式&#xff0c;外观模式通过封装细节来提供大粒度的调用&#xff0c; 直接的好处就是&#xff0c;封装细节&#xff0c;提供了应用写程序的可维护性和易用性。…

Es6中的拓展运算符参数解构在实际项目当中应用

扩展操作符 … 是ES6中引入的&#xff0c;将可迭代对象展开到其单独的元素中,常见的应用场景有:拷贝数组对象,合并数组,参数传递,数组去重,字符串转字符数组,解构变量等 单纯的学习某个技术知识点,很容易的,但是能在实际项目中运用进去,那就不简单了的 单纯的学习某个语言的语法…

国家矿山安全监察局关于露天矿山边坡监测系统建设及预警响应要求

矿山是人类社会发展的物资基础&#xff0c;也是国民经济的重要组成部分。随着我国经济的快速增长&#xff0c;矿山开发步伐加快&#xff0c;使得边坡问题日益严重&#xff0c;影响了矿山的安全生产。为有效防范遏制矿山重特大事故发生&#xff0c;国家矿山安全监察局在8月30日发…

Laravel系列开源Dcat admin礼盒商城后台管理项目

前言: 在最近能在与某位前段大佬,合作开发一款项目,这宽项目是由laravel框架搭建使用的Dcat admin框架所制作的一个后台的管理系统,前段制作的是一款小程序,虽说后台管理系统无论是前段还是后端都是千篇一律,但内容也是非常丰富。但本项目仅作为开源学习和技术交流&#xff0c…

爬虫数据清洗可视化实战-就业形势分析

基于采集和分析招聘网站的数据的芜湖就业形势的调查研究 一、引言 本报告旨在分析基于大数据的当地就业形势&#xff0c;并提供有关薪资、工作地点、经验要求、学历要求、公司行业、公司福利以及公司类型及规模的详细信息。该分析是通过网络爬虫技术对招聘网站的数据进行采集…

校园二手物品交易系统微信小程序设计

系统简介 本网最大的特点就功能全面&#xff0c;结构简单&#xff0c;角色功能明确。其不同角色实现以下基本功能。 服务端 后台首页&#xff1a;可以直接跳转到后台首页。 用户信息管理&#xff1a;管理所有申请通过的用户。 商品信息管理&#xff1a;管理校园二手物品中…

蓝牙服务功能

前言 这阵子用到蓝牙比较多&#xff0c;想写一个专栏专门讲解蓝牙协议及其应用&#xff0c;本篇是第二篇文章&#xff0c;讲解蓝牙服务。 参考网上各大神文章&#xff0c;及瑞萨的文章&#xff0c;参考GPT&#xff0c;并且加入了一些本人的理解。 图片部分源自网络&#xff…

树形控件加自定义图标样式及指引线

记录一下留用&#xff0c;有错误请指正。 效果图如下&#xff1a; 自定义图标及指引线 代码&#xff1a; <div class"head-container" style"margin-left: -15px;"><el-tree icon-class"none"style"height:100%; overflow-y: h…

ffmpeg-android studio创建jni项目

一、创建native项目 1.1、选择Native C 1.2、命名项目名称 1.3、选择C标准 1.4、项目结构 1.5、app的build.gradle plugins {id com.android.application }android {compileSdk 32defaultConfig {applicationId "com.anniljing.ffmpegnative"minSdk 25targetSdk 32…

浏览器进程,性能指标,性能优化

目录 浏览器进程&#xff1a;多进程 主进程&#xff1a;显示、交互&#xff0c;增删进程 UI进程&#xff1a;控制地址栏、书签、前进后退 存储进程&#xff1a;cookie&#xff0c;webstorage&#xff0c;indexDB 渲染进程&#xff1a;每个标签页或窗口都有一个独立的渲染进…

Android11编译第四弹:证书和资源内置

问题&#xff1a;我们智能货柜&#xff0c;终端与云端采用的是MQTT通信&#xff0c;为了更加安全&#xff0c;需要采用HTTPS进行通信。这样&#xff0c;中断需要内置证书。这就需要实现ROM中内置资源&#xff0c;将资源打包到系统中。 一、什么是内置资源 内置资源&#xff0…

LeetCode刷题笔记【29】:动态规划专题-1(斐波那契数、爬楼梯、使用最小花费爬楼梯)

文章目录 前置知识解题思路解题步骤动态规划的debug 509. 斐波那契数题目描述解题思路代码使用dp数组优化空间复杂度: 不用数组, 只用两个变量记录即可 70. 爬楼梯题目描述解题思路代码使用dp数组优化空间复杂度: 不用数组, 只用两个变量记录即可 746. 使用最小花费爬楼梯题目描…

Mybatis传递实体对象只能直接获取,不能使用对象.属性方式获取

mybatis的自动识别参数功能很强大&#xff0c;pojo实体类可以直接写进mapper接口里面&#xff0c;不需要在mapper.xml文件中添加paramType,但是加了可以提高mybatis的效率 不加Param注解&#xff0c;取值的时候直接写属性 //这里是单参数&#xff0c;可以不加param&#xff01…

YOLO的基本原理详解

YOLO介绍 YOLO是一种新的目标检测方法。以前的目标检测方法通过重新利用分类器来执行检测。与先前的方案不同&#xff0c;将目标检测看作回归问题从空间上定位边界框&#xff08;bounding box&#xff09;并预测该框的类别概率。使用单个神经网络&#xff0c;在一次评估中直接…